

This paper proposes that the meanings of some natural language expressions should
be thought of as functions on their own continuations. Continuations are a well-
established analytic tool in the theory of programming language semantics; in brief,
a continuation is the entire default future of a computation. I show how a continua-
tion-based grammar can unify several aspects of natural language quantification in a
new way: merely stating the truth conditions for quantificational expressions in terms
of continuations automatically accounts for scope displacement and scope ambiguity.
To prove this claim, I exhibit a simple finite context-free grammar with a strictly
compositional semantics in which quantificational NPs are interpreted in situ but
take semantic scope over larger constituents. There is no Quantifier Raising (nor any
use of a level of Logical Form distinct from overt syntax), no Cooper Storage (or similar
mechanisms used in many recent HPSG, Categorial, or Type-logical treatments), and
no need for type-shifting (as in Hendriks’ Flexible Types account). Continuations
also provide a natural account of generalized coordination that does not require either
type-shifting or type polymorphism. Compositionality issues are discussed in some
detail.

1 . I N T R O D U C T I O N : T H E C O N T I N U AT I O N H Y P O T H E S I S

This paper sets out to motivate the use of continuations as a tool for
describing natural language meaning. The main result is a demonstration
of how a continuation-based analysis can unify several aspects of nominal
quantification in a new way. The aspects at issue correspond to the following
three questions:

(1) a.

Duality of NP meaning: What (if anything) unifies the meanings
of quantificational versus non-quantificational NPs?

b. Scope displacement: Why does the semantic scope of a quan-
tificational NP sometimes differ from its syntactic scope?

c. Scope ambiguity: How does scope ambiguity arise?

Logically, the answers to these questions could all be quite different. Of

CHRIS BARKER

Natural Language Semantics 10: 211–242, 2002.
 2003 Kluwer Academic Publishers. Printed in the Netherlands.

CONTINUATIONS AND THE NATURE

OF QUANTIFICATION*

* Thanks to Mark Gawron, Philippe de Groote, Ed Keenan, Chung-Chieh Shan, two anony-
mous referees, and audiences at UC Irvine, SALT 11, MIT, and INRIA-Lorraine. This paper
was written in August 2000 and revised in August 2002; however, the revisions do not
fully reflect recent advances in the understanding of continuations as applied to natural
language, notably de Groote (2001), which presents an application of Parigot’s

λµ-calculus
to quantificational issues, and Shan (2002), which proposes a type-shifting grammar based
on higher-order continuations to explain superiority effects in multiple WH-questions.

course, scope ambiguity cannot exist without scope displacement; never-
theless, it makes sense to consider them separately, since on at least one
influential theory of quantification (May 1985), relative scope is determined
by a separate mechanism from scope displacement. In addition, the exis-
tence of scope ambiguity is open to dispute (e.g., Reinhart 1979; Chierchia
and McConnell-Ginet 1990, p. 116) in a way that the manifest existence
of scope displacement is not.

What do other theories have to say about the three questions in (1)? I
will take Quantifier Raising at a level of Logical Form to be the dominant
view of natural language quantification among linguists and perhaps among
philosophers – or at the very least, the most universally familiar one. The
QR story is enormously persuasive and robust, both from a descriptive
and from an explanatory point of view. For the sake of concreteness, I
will use Heim and Kratzer (1998) (especially chapters 6 and 7) as my
reference for the standard QR view.1 On Heim and Kratzer’s version of
the story, non-quantificational NPs denote entities (type

e), quantifica-
tional NPs (henceforth, ‘QNPs’) denote generalized quantifiers (type
〈〈e, t〉, t〉), and typical transitive verbs denote relations over entities (type
〈e, 〈e, t〉〉).2 When a QNP occurs in subject position, type-driven com-
position allows (indeed, requires) it to take the verb phrase (type 〈e, t〉)
as an argument. However, when a QNP occurs in a non-subject position,
including direct object position, a type mismatch occurs (assuming, as Heim
and Kratzer carefully note, that certain type-shifting operations are disal-
lowed). Since interpretation would otherwise be impossible, QR adjoins
the offending QNP higher in the tree, leaving behind a pronoun in the
original NP position. This repairs the type mismatch, and simultaneously
explains scope displacement. In addition, (in most versions of the QR
approach) we also have an explanation for scope ambiguity, since we can
assume that the relative scope of QNPs reflects the order in which they were
raised.

Under the QR account, the best we can say in answer to the duality

212 CHRIS BARKER

1 Heim and Kratzer (1998) is a textbook, and consequently the authors’ discussion is
simplified in ways that may weaken the coverage of their analysis compared to cutting-
edge versions of QR. Besides clarity and accessibility, what makes Heim and Kratzer’s version
a suitable choice here is their careful development of the motivation behind the QR approach,
the nature of its explanatory power, and the trade-offs in comparison with in-situ Null-LF
approaches (in their case, Hendriks’ Flexible Types, which is also discussed directly below).
Furthermore, they provide an excellent checklist of basic (and not so basic) examples that any
theory of quantification needs to explain.
2 In Montague’s (1973) type system, an expression of type e denotes an object in the set
of individuals E, an expression of type t denotes a truth value, and an expression of type
〈α, β〉 denotes a function from objects of type α to objects of type β.

question in (1a) is that a generalized quantifier is what a subject NP would
have to denote in order to take a verb phrase as an argument. But why
are subjects special? And why repair type mismatches via QR, rather than,
say, prohibiting QNPs in non-subject positions? There may be reasonable
answers to these questions, perhaps along the lines of claiming that since
QR resembles overt syntactic movement, we can use it “for free”; my
point is that the fact that these questions require answers shows that duality
and scope displacement are distinct phenomena according to the QR view.

Choosing the other horn of the dilemma, Montague (1973) (henceforth,
PTQ) gives a compelling answer to the duality question: non-quantifica-
tional NPs and QNPs all denote generalized quantifiers. That is why they
have closely similar syntactic distribution, and in the PTQ fragment, pred-
icates accept generalized quantifiers in any NP position without type
mismatch. But nothing in the type system forces QNPs to take wide scope.
As a result, Montague needs to stipulate a separate operation of quanti-
fying in to account for scope displacement and scope ambiguity. Once again
we fail to provide a unified answer to the three questions in (1).

In Hendriks’ (1988, 1993) Flexible Types approach (similar ideas are
present in Partee and Rooth 1983 and Keenan 1987), many transitive verbs
have as their basic type a relation over individuals. Hendriks provides a rule
called Argument Raising that raises the type of one argument of a predi-
cate from entity type to generalized quantifier type, and simultaneously gives
that argument scope over the other arguments of the predicate. The order
in which Argument Raising applies to the two arguments of, for instance,
a transitive verb determines the relative scope of the arguments. Thus the
single rule of Argument Raising simultaneously accounts for duality as well
as at least some portion of scope displacement and scope ambiguity.

Unfortunately, the rule of Argument Raising alone is not sufficient to
give a complete analysis of scope displacement and scope ambiguity. At
least one additional type-shifting schema (Value Raising) is needed. Yet
again, a complete unified explanation eludes us.

Therefore, consider the following proposal:

(2) The Continuation Hypothesis: Some linguistic expressions
(in particular, QNPs) have denotations that manipulate their own
continuations.

As explained in detail in the sections below, this single assumption provides
answers to all three of the questions in (1): (a) QNPs denote the same
kind of object as other types of NP, so there is no type clash when they
occur in object position or other NP argument positions; (b) because of
the nature of continuations, merely stating the truth conditions of a QNP

CONTINUATIONS AND QUANTIFICATION 213

in terms of continuations automatically guarantees that it will have semantic
scope over an entire clause – in other words, scope displacement follows
directly from the semantic nature of quantification; finally, (c) scope
ambiguity turns out to be a natural consequence of indeterminacy in the way
in which continuations get put together in the course of composing a
complex meaning. In sum, duality, scope displacement, and scope ambi-
guity all follow from the single assumption that noun phrase meanings have
access to their continuations.

2 . C O N T I N U AT I O N S

Reynolds (1993) tells how the concept of continuations emerged indepen-
dently in the work of several computer scientists in the 1960s and early
1970s. In fact, with the benefit of hindsight, a limited form of continua-
tion-passing is clearly discernible at the core of Montague’s (1973) PTQ
treatment of NPs as generalized quantifiers (what continuation-passing is
will be explained in section 2.2, and the connection with PTQ will be
developed in some detail). Currently, according to Danvy and Talcott (1998,
p. 115), continuations are “ubiquitous in many different areas of computer
science, including logic, constructive mathematics, programming languages,
and programming.”

Unfortunately, continuations are a notoriously difficult idea to explain
at an intuitive level. I will make my best attempt, of course, but experi-
ence suggests that a full understanding of continuations usually emerges
only after working through a number of concrete examples.

2.1. What Is a Continuation?

Actually, understanding what a continuation is per se is not so hard; what
is more difficult is understanding how a grammar based on continuations
works – what I will call a ‘continuized’ grammar.

Kelsey et al. (1998, p. 71) explain that “a continuation represents the
entire (default) future for the computation.” For instance, when computing
the meaning of the sentence John saw Mary, the default future of the value
denoted by the subject is that it is destined to have the property of seeing
Mary predicated of it. In symbols, the continuation of the subject denota-
tion j is the function λx.saw m x.3 Similarly, the default future of the
object denotation m is the property of being seen by John, λy.saw y j;

214 CHRIS BARKER

3 When parentheses are omitted, functional application is left-associative, as usual, so that
saw mx = ((saw m))(x)).

the continuation of the transitive verb denotation saw is the function
λR.R m j; and the continuation of the VP saw Mary is the function
λP.P j.

This simple example illustrates two important aspects of continuations:
(1) every meaningful subexpression has a continuation; and (2) the con-
tinuation of an expression is always relative to some larger expression
containing it. Thus when John occurs in the sentence John left yesterday,
its continuation is the property λx.yesterday left x; when it occurs in Mary
thought John left, its continuation is the property λx.thought (left x) m;
when it occurs in the sentence Mary or John left, its continuation is
λx.(left m)

∨ (left x); and so on.
For those readers familiar with Rooth’s alternative-set semantics for focus

constructions, it may be helpful to think of a continuation as roughly similar
in form to the abstract that generates the focus alternative set when the
expression in question is in focus.

In general, given a subexpression A of type α embedded in an expres-
sion B of type β, the continuation of A relative to B is a function of type
〈α, β〉 abstracting over the denotation of A that characterizes how the
meaning of the whole depends on the meaning of the subexpression.
Continuations, then, are just a different way of looking at the relationship
between the meaning of a complex expression and the meaning of its parts.

Clearly, continuations exist independently of any framework or specific
analysis, and all occurrences of expressions have continuations in any
language that has a semantics. Since continuations are nothing more than
a perspective, they are present whether we attend to them or not. The
question under consideration, then, is not whether continuations exist – they
undoubtedly do – but precisely how natural language expressions do or don’t
interact with them.

2.2. Continuizing a Simple Grammar:
Deriving Generalized Quantifiers as a Special Case

The basic idea of continuizing a grammar is to provide subexpressions
with direct access to their continuations. In order to do this, the denota-
tions of the subexpressions must be modified to take a continuation as an
argument.

In the theoretical computer science literature, a program modified in
this way is said to be written in CONTINUATION-PASSING STYLE, and the rela-
tionship between a non-continuized program and a continuized one is
given as a syntactic transformation called a CPS TRANSFORM. Since we
are discussing grammars for natural language, the relevant transform here

CONTINUATIONS AND QUANTIFICATION 215

takes a non-continuized grammar and produces the equivalent continuized
grammar. I will say that a grammar before continuization has a DIRECT

semantics, and a grammar after continuization has a CONTINUIZED seman-
tics.

I will build a continuized fragment with quantification in three main steps:
first, I will present a non-quantificational grammar with a direct seman-
tics. Then I will construct an equivalent continuized grammar. Finally, I will
add elements to the continuized grammar that exploit the presence of con-
tinuations in order to account for scope displacement and scope ambiguity.

First, the direct semantics. Consider the following simple context-free
syntax with an extensional semantics for a fragment without quantifica-
tion.

(3) SYNTAX DIRECT SEMANTICS

S → NP VP

�VP�(�NP�)
VP → Vt NP �Vt�(�NP�)
NP → John j
NP → Mary m
VP → left left
Vt → saw saw

Leaving the model-theoretic interpretation of the logical language implicit
(but, I trust, obvious), we have the following translations after lambda
conversion:

(4) a. John left. left j
b. John saw Mary. saw m j

Note that this grammar operates with the following types for each syn-
tactic category it recognizes:

(5) DIRECT SEMANTIC

DENOTATION TYPE DESCRIPTION

�S� t truth value
�NP� e entity
�VP� 〈e, t〉 property (i.e., a set of entities)
�Vt� 〈e, 〈e, t〉〉 relation over entities

This grammar, needless to say, will not accommodate quantificational NPs.
It will be helpful to be similarly explicit about the semantic types of some

of the symbols used in the logical translation language.

216 CHRIS BARKER

(6) DIRECT VARIABLE TYPE

p, q t
x, y, z e
P, Q 〈e, t〉
R, S 〈e, 〈e, t〉〉

Logical constants such as j, left, and saw have the semantic type of
their corresponding syntactic category (for these examples, e, 〈e, t〉, and
〈e, 〈e, t〉〉, respectively).

Since we will be dealing in continuations, we will need new logical
symbols to use as variables over continuation objects. Somewhat abusing
the notational conventions of computer science discussions of continuations,
I will relate a continuation variable to its direct counterpart by drawing a
line over the continuation variable:

(7) CONTINUATION VARIABLE TYPE

p,q 〈t, t〉
x,y,z 〈e, t〉
P,Q 〈〈e, t〉, t〉
R,S 〈〈e, 〈e, t〉〉, t〉

Comparing (6) with (7), the relationship between a direct variable and its
continuation counterpart should be fairly transparent. Since continuations
are functions from the type of the direct value to the type of the meaning
of the larger expression as a whole, and since in this paper the larger
expression will always be a declarative sentence of type t, the type of the
continuation variable will be a function from the type of the corresponding
direct variable to a truth value. For instance, since P is a variable of type
〈e, t〉,P is a variable of type 〈〈e, t〉, t〉.

The goal of continuizing the grammar is to provide each expression
with its own continuation as an argument. Therefore if an expression of
category A with semantic type α has direct denotation �A�, then the
continuized denotation ��A�� will be a function from A-continuations (type
〈α, t〉) to the type of the larger expression as a whole, i.e., to a truth value:
type (��A��) = 〈〈α, t〉, t〉.

(8) CONTINUIZED DENOTATION TYPE

��S�� 〈〈t, t〉, t〉
��VP�� 〈〈〈e, t〉, t〉, t〉
��NP�� 〈〈e, t〉, t〉
��Vt�� 〈〈〈e, 〈e, t〉〉, t〉, t〉

CONTINUATIONS AND QUANTIFICATION 217

For instance, a continuized VP is a function from VP continuations to
truth values.

In section 5, I will give a general procedure for continuizing an arbi-
trary compositional grammar in which the nature of continuization is
captured in a single parameterized schema. Because of the high level of
generality involved, the definitions with the parameters are rather abstract;
therefore at this stage in the exposition I will give several separate schemata,
and show in section 5 how they correspond to instances of the general
schema. To begin, we will need one rule for lexical entries and one for
functional application:

(9) SYNTAX DIRECT SEMANTICS CONTINUIZED SEMANTICS

A → B �B� λb.b(��B��)
A → B C �B�(�C�) λa.��B��(λb.��C��(λc.a(bc)))

Here a, b, and c are logical variables of the same type as the direct values
of A, B, and C, respectively. As desired, each syntactic constituent takes
a continuation as an argument.

Continuations as implemented here are significantly simpler than standard
programming language treatments of continuations. The opportunity for sim-
plicity comes from the fact that none of our composition rules involve
creating a new lambda abstract. In particular, there will be no need to
posit a rule corresponding to predicate abstraction, as there is in the treat-
ment of Quantifier Raising in Heim and Kratzer (1998, p. 186).

Applying the schemata in (9) to the direct grammar in (3) gives a con-
tinuized grammar:

(10) SYNTAX CONTINUIZED SEMANTICS

a. S → NP VP λp.��VP��(λP.��NP��(λx.p(Px)))
b. VP → Vt NP λP.��Vt��(λR.��NP��(λx.P(Rx)))
c. NP → John λx.x(j)
d. NP → Mary λx.x(m)
e. VP → left λP.P(left)
f. Vt → saw λR.R(saw)

An example will show how the continuized grammar computes a result
equivalent to the basic grammar. First, note that the syntax of the continuized
grammar in (10) is identical to that of the original grammar in (3).

218 CHRIS BARKER

(11) [S [NP John] [VP left]] Syntax for John left
λp.��left��(λP.��John��(λx.p(Px))) Rule (10a)
λp.��left��(λP.((λx.x(j))(λx.p(Px)))) Rule (10c)
λp.��left��(λP.p(P j)) β-conversion
λp.(λP.P(left))(λP.p(P j)) Rule (10e)
λp.p(left j) β-conversion

In the continuized grammar, John left denotes a function from sentence
continuations to a truth value (type 〈〈t, t〉, t〉). If we provide ��John left��
with the most trivial continuation possible (namely, the identity function,
λp.p), we get (12).

(12) (λp.p(left j))(λp.p) application to the trivial continuation
left j β-conversion

It is easy to verify for this simple case that, modulo application to the trivial
continuation, the continuized grammar always computes the same values
as the original direct grammar. This equivalence is proven for the general
case in section 5.

Note in (8) that a continuized NP denotation is of type 〈〈e, t〉, t〉. That,
of course, is the type of (an extensional) generalized quantifier as proposed
in PTQ. This is the sense in which PTQ involves a limited form of
continuation-passing: saying that NPs denote generalized quantifiers
amounts to saying that NPs denote functions on their own continuations.

This result bears emphasizing: the generalized quantifier conception of
NP meaning falls out automatically from continuizing a non-quantificational
grammar. Moreover, unlike the treatment in PTQ, nothing in the con-
tinuization transform is NP specific. In other words, the treatment of NPs
as generalized quantifiers is a special case of the more general concept of
continuization.

2.3. The Nature of Quantification

So far all we have done is construct a continuized grammar that is equiv-
alent to the original basic grammar. We are now in a position to provide
truth conditions for some quantificational expressions.

(13) a. NP → everyone λx∀x.x(x)
b. NP → someone λx∃x.x(x)

These rules have no counterpart in the direct grammar. This amounts to
saying that the meanings of everyone and someone are essentially quan-

CONTINUATIONS AND QUANTIFICATION 219

tificational; their meanings can be expressed only in terms of an already-
continuized grammar like that in (10).

Note that the denotation of the NP everyone is the same type as the
denotation of a continuized NP in (10), namely, a function from NP con-
tinuations to truth values (type 〈〈e, t〉, t〉). (And in general, all members
of a given syntactic category denote objects of the same semantic type.)
This is the answer to the question in (1a) concerning the duality of NP
meaning: QNPs and other NPs denote the same kind of semantic object,
which accounts for their syntactic and semantic interchangeability. QNP
denotations differ from the denotations of other NPs only in that QNPs
take advantage of the presence of continuations in a way that non-quan-
tificational NPs do not.

More specifically, the rule in (13a) says that when everyone is used in
a context in whichx is its continuation, the semantic result depends on trying
all the possible individuals that might be fed to that continuation. Similarly,
the denotation of someone takes its continuation and wraps an existential
quantification around it.

An example will show how these rules work. When the rules in (13)
are added to the continuized grammar in (10), Everyone left smoothly
evaluates to ∀x.left x. Unlike the QR treatment, however, when a QNP
occurs in direct object position, there is no type clash, and the computa-
tion proceeds just as smoothly:

(14) John saw everyone.
[S [NP John] [VP [Vt saw] [NP everyone]]]
λp.��saw��(λR.��everyone��(λy.��John��(λx.p(Ryx))))
λp.��everyone��(λy.��John��(λx.p(saw yx)))

† λp.��everyone��(λy.p(saw y j))
λp.((λx∀x.xx))(λy.p(saw y j)))
λp.∀x.p(saw x j)

Applying this denotation to the trivial continuation, we get ∀x.saw x j,
which is a reasonable (extensional) denotation for the sentence John saw
everyone.

The line marked with a dagger (‘†’) reveals that the continuation for
the direct object NP everyone is λy.p(saw y j): roughly (ignoring the
continuation variablep) the property of being seen by John. Unlike what
we find in Quantifier Raising analyses, this property does not correspond
to any syntactic or logical constituent; rather, the daggered line is guaran-
teed to be semantically equivalent to the meaning of the sentence as a whole
by beta-reduction.

In any case, there is no type clash or asymmetry between quantificational

220 CHRIS BARKER

NPs occurring in subject and non-subject positions, as there is in the QR
account.

Quantificational determiners. The rules in (13) treat everyone and someone
as lexical (i.e., syntactically unanalyzed) NPs. Most QNPs, of course, are
syntactically complex and contain a quantificational determiner. The
Appendix explains how the continuation analysis naturally leads to con-
sidering all determiners – even quantificational ones – as having denotations
based on choice functions. The result looks very different from the tradi-
tional generalized quantifier treatment as in, e.g., Barwise and Cooper
(1981). Trying to understand how to continuize a grammar and at the same
time to also re-analyze determiners as choice functions is a heavy load;
therefore, for purely expository reasons, for now I will provide a special
composition rule (i.e., a composition rule that is not an instance of the
schemata in (9)) for quantificational determiners:

(15) SYNTAX SEMANTICS

NP → Det N ��Det��(��N��)

This allows for (comparatively) familiar lexical entries for quantificational
determiners along the following lines:

(16) every λPx.P(λP ∀x.Px →x(x))
a, some λPx.P(λP ∃x.Px ∧x(x))
most λPx.P(λP.most(P)(x))
no λPx.P(λP.¬∃x.Px ∧x(x))

Here, →, ∧, and ¬ are the standard logical connectives defined over truth
values, and most is the familiar relation over sets used in, e.g., Barwise
and Cooper (1981). Recall thatx is a variable over NP continuations, and
therefore is a function from individuals to truth values, which is the same
type as the direct variable P. Thus these denotations take a continuized
nominal denotation as an argument and return a continuized NP meaning.

A few examples will illustrate these definitions in action. The grammar
consisting of the union of the rules in (10), (13), (15), and (16) generates
the following analyses:

(17) a. John saw every men. ∀x.man x → saw x j
b. John saw most men. most(man)(λx.saw x j)
c. Every man saw a woman. ∃y.woman y ∧ ∀x.man x → saw yx

Note that the interpretation in (17c) corresponds to inverse scope, since
the direct object takes scope over the subject. This shows that despite

CONTINUATIONS AND QUANTIFICATION 221

being an ‘in situ’ analysis, nothing in the continuation mechanism itself
biases towards linear scope or inverse scope. (Arriving at the opposite
scoping is the topic of the next subsection.)

In sum, continuations allow NPs to function as generalized quantifiers
in any syntactic argument position. Furthermore, stating the truth conditions
for quantificational NPs in terms of continuations automatically accounts
for scope displacement.

2.4. Scope Ambiguity: A Question of Priority

The analysis so far provides reasonable interpretations for sentences
involving quantifiers, but it provides only one interpretation for each
sentence. How does relative scope ambiguity arise?

The answer comes from the fact that there is more than one way to
continuize a given composition rule. The continuized grammar given in (10)
contains rule (18a):

(18) a. S → NP VP λp.��VP��(λP.��NP��(λx.p(Px)))
b. S → NP VP λp.��NP��(λx.��VP��(λP.p(Px)))

But we might just as well have used (18b). Substituting (18b) in the example
grammar will allow the subject to take wide scope over the VP. (Both
(18a) and (18b) are instances of the general continuization schema discussed
in section 5.)

How shall we interpret this state of affairs? Given the equation S =
VP(NP), we can either interpret the NP as providing the continuation for
the VP (“What you do with a VP is apply it as a functor to the subject”)
or we can interpret the VP as providing the continuation for the subject
(“What you do with a subject is feed it as an argument to a VP”). The
result is the same, in the absence of quantification – but in the presence
of quantification, the two perspectives lead to different relative scopings.

Computationally, the two rules in (18) correspond to different orders
of execution. In fact, one of the main applications of continuations to date
(see, e.g., Meyer and Wand 1985, p. 223) is to model programming lan-
guages in which evaluating expressions may have side effects, in which case
the behavior of the program may differ depending on whether arguments
are evaluated left-to-right or right-to-left. If left-to-right order of evalua-
tion is desired, only rules like (18a) are included in the continuized grammar,
and vice versa for right-to-left evaluation. In a grammar modeling a natural
language, of course, we can have both types of rules, leading to ambi-
guity.

Therefore let us say that (18a) gives the VP PRIORITY over the NP, so

222 CHRIS BARKER

that quantificational elements in the VP take scope over the NP. Similarly,
(18b) gives the NP priority over the VP, so that the subject takes wide scope.

Since both prioritizations are equally valid ways of providing access to
continuations, unless we say something extra, both are equally available
for use. Thus stating the meaning of quantificational elements by means
of continuations automatically predicts not only scope displacement, but
scope ambiguity as well.

2.5. Bounding Scope Displacement

In general, scope displacement can cross an unbounded number of syntactic
levels.

(19) a. A raindrop fell on every car.
b. A raindrop fell on the hood of every car.
c. A raindrop fell on the top of the hood of every car.

It is easy to see how to extend this series ad infinitum. The most natural
reading of these sentences requires that every take wide scope over a
raindrop. (See the Appendix for the complete fragment that generates
examples like (19).)

However, some people believe that QNPs cannot take scope outside of
their minimal tensed S. If so, then something special must be said about
tensed Ss (just as in every other theory of quantifier scope). One way to
accomplish this here is to adjust the composition rules for the S node so
as to disrupt the transmission of continuation information between the
subconstituents and the S:

(20) a. OLD: S → NP VP λp.��VP��(λP.��NP��(λx.p(Px)))
b. NEW: S → NP VP λp.p(��VP��(λP.��NP��(λx.Px)))

(A similar adjustment needs to be made in the S rule given in (18b) with
the opposite scoping priority; see the fragment in the Appendix.) The dif-
ference is that the occurrence of the clause’s continuation,p, is inside the
scope of the subject and of the verb phrase in (20a), but is outside in (20b).

(21) a. A man thought everyone saw Mary.
b. ∃y.man y ∧ thought(∀x.saw m x) y

Given the revision in (20b), all scopings of (21a) are logically equivalent
to (21b). That is, every is not able to take scope outside of the embedded
clause.

Note that the adjustment in (20b) can only be made for syntactic cate-
gories whose direct (i.e., uncontinuized) type is t, since the value returned

CONTINUATIONS AND QUANTIFICATION 223

by the outermost continuized function must serve as the argument to the
continuation for that expression. (See Heim and Kratzer (1998, p. 215)
for a derivation of the analogous constraint in QR theories.)

2.6. Summary of Section 2

At this point we have a unified explanation for the questions in (1). As
for the puzzle of NP Duality, QNPs denote the same type of function as
other NPs, which explains their syntactic interchangeability; quantificational
and non-quantificational NPs differ only in that QNPs exploit the presence
of continuations in a way that non-quantificational NPs do not. As for scope
displacement and scope ambiguity, merely stating the truth conditions for
QNPs in terms of continuations automatically accounts for scope dis-
placement and scope ambiguity without further stipulation.

3 . NP A S A S C O P E I S L A N D

One advantage of the account of scoping given in section 2 is that it
automatically provides both linear and inverse scope when a QNP is
embedded within an NP:

(22) a. [No man from a foreign country] was admitted.
b. ¬∃x∃y.man x ∧ country y ∧ from y x ∧ admitted x
c. ∃y¬∃x.man x ∧ country y ∧ from y x ∧ admitted x

The QNP a foreign country is embedded within the subject NP. On the most
prominent reading of (22a), no takes scope over a, resulting in the truth
conditions given in (22b). On the continuation analysis, this reading is
produced automatically when the quantificational determiner a is given
priority over the nominal from a foreign country. There is also a so-called
inverse linking reading, as given in (22b), which arises when the nominal
is given priority over the determiner. (The inverse linking reading is more
prominent in other examples, such as An apple in every basket was rotten.)

Linear scope in examples like (22) poses a problem for QR theories. If
QR simply adjoins QNPs to S, the obvious thing to try is to first raise a
foreign country to S, then raise No student from

t, where t is the trace left
by QR of a foreign country. This gives the correct scoping, but leaves the
trace of the first raised NP unbound, leading to an uninterpretable struc-
ture, or at least to incorrect truth conditions.

May (1985) and Richard Larson (in unpublished work described in Heim
and Kratzer 1998, p. 233) conclude that NP is a scope island: an NP
embedded within an NP may move only as far as its containing NP. It is

224 CHRIS BARKER

fairly natural to decide that NP is a scope island, since NP is an island
for overt syntactic movement, and QR is generally supposed to obey the
same constraints that govern syntactic movement. However, allowing a QNP
to adjoin to NP creates an awkward problem for interpretation: it requires
type flexibility, since the raised NP is not the right type when adjoined
within NP to receive its normal interpretation (see Heim and Kratzer 1998,
p. 221). Therefore it is to the credit of the continuation analysis that it
handles linear and inverse scope for QNPs within NP without special stip-
ulation.

Interestingly, in addition to providing linear scope and preventing
unbound traces from arising, making NP a scope island makes good pre-
dictions with respect to the observed range of scope orderings, as May
and Larson note.

(23) a. Two politicians spy on [someone from every city]. (May)
b.*every city > two politicians > someone

May observes that sentence (23a) does not have the scoping indicated in
(23b). This is explained if QR must adjoin to the closest containing NP,
since that would prevent every city from escaping from the object NP; as
a result, there is no way that two politicians can take scope over someone
without also taking scope over every city.

The continuation analysis also predicts the impossibility of the scoping
in (23). In fact, the continuation fragment obeys a more general constraint
that I call the SYNTACTIC CONSTITUENT INTEGRITY scoping constraint (Barker
2001). Integrity requires that if there is a syntactic constituent that contains
B and C but not A, then A must take scope over both B and C or neither.
The reason the continuation analysis obeys Integrity has to do with the
nature of the priority relation:

(24) [. . . A . . .]X [. . . B . . . C . . .]Y

Either X (and everything X contains) will take priority over Y (and take
scope over everything within Y), or else Y (and everything within Y) will
take scope over X. Thus (23) is a special case of Integrity:

(25) [Two politiciansA] [spy on someoneB from every cityC]

The Integrity constraint says that two politicians cannot take scope over
someone without also taking scope over every city, correctly predicting
that the scoping in (23b) is impossible. Once again, the continuation analysis
makes a good prediction without needing to stipulate any special property
of NPs.

It is worth mentioning that Integrity also limits possible scopings when

CONTINUATIONS AND QUANTIFICATION 225

a ditransitive verb has three quantificational NPs as arguments, since only
four of the six possible factorial scopings are consistent with Integrity:

(26) a. Most subjects put an object in every box.
b.*every box > most subjects > an object

For instance (assuming that put an object in every box is a syntactic con-
stituent on every syntactic analysis of (26a)), Integrity predicts that (26a)
cannot have the scoping in (26b). In Barker (2001), I argue that this is a
good prediction empirically; however, the issue is fairly intricate, since it
is necessary to factor out specific indefinites, syntactic ambiguity, collec-
tive and distributive readings, and function composition of the sort proposed
in Steedman (2000). See Barker (2001) for discussion.

In sum, QR without constraints creates unbound traces and incorrect truth
conditions. Making NP a scope island prevents unbound traces and accounts
for one kind of Integrity effect; however, it also creates a type mismatch.
The continuation analysis, remarkably, with no special stipulations at all
gets linear scoping, inverse scoping, and NP-related Integrity effects right.

4 . G E N E R A L I Z E D C O O R D I N AT I O N W I T H O U T T Y P E -S H I F T I N G O R

TY P E P O LY M O R P H I S M

The question naturally arises whether other linguistic elements manipu-
late continuations besides quantificational NPs. This section shows how
continuations can provide an account of generalized conjunction that is
simpler than other accounts in certain specific ways.

(27) a. John left and John slept. and(left j)(slept j)
b. John left and slept. and(left j)(slept j)
c. John saw and liked Mary. and(saw m j)(liked m j)
d. John and Mary left. and(left j)(left m)

The examples in (27) illustrate coordination of S, VP, Vt, and NP. As the
translations indicate (see the Appendix for details), the truth conditions of
one reading of each of these sentences can be accurately expressed by
unpacking the coordination into conjoined clauses. Of course, there are
are a variety of other uses of and that cannot be paraphrased by means of
conjoined clauses (John and Mary are a happy couple; the flag is red and
white) that I will not discuss (see the more complete disclaimer in Partee
and Rooth 1983, p. 361). Disjunction, unlike conjunction, seems to have
only a generalized use, i.e., it is always possible to find a paraphrase
involving disjoined clauses; in any case, it is generalized coordination that
will interest us here.

226 CHRIS BARKER

I will call the sense of and whose meaning is equivalent to conjoined
sentences GENERALIZED and. The question, then, is how best to capture what
the different uses of generalized and in (27) (similarly, for or) have in
common semantically.

Partee and Rooth (1983), building on work of Gerald Gazdar, Arnim
von Stechow, and especially of Ed Keenan and Aryeh Faltz, give an analysis
of generalized coordination that has three parts. First, they stipulate that a
CONJOINABLE TYPE is any type ending in t. Examples include sentences
(type t), verb phrases and common nouns (type 〈e, t〉), and quantifica-
tional NPs (type 〈〈e, t〉, t〉), but not the basic (i.e., lexical) type of proper
names (type e).

Second, they rely on a syntactic schema to generalize over the conjoin-
able syntactic categories.

(28) SYNTAX SEMANTICS

X → Xl and Xr and〈α, β〉 (�Xl�)(�Xr�)

Third, they provide a recursive rule characterizing how the meaning of
generalized and for complex semantic types relates to the meaning of and
for simpler types. Let L and R be meanings of type 〈α, β〉. Then Partee
and Rooth (1983) have:

(29) and〈α, β〉 (L)(R) = λa.andβ(L(a))(R(a))

where a is a variable over objects of type α. The base case says that andt

is the standard binary operator over truth values.
On this analysis generalized and has a single meaning, but that meaning

is type polymorphic (i.e., able to take arguments of different semantic types).
For instance, if we instantiate the syntactic schema for coordinating VPs,
then the denotation of and takes properties (here, type 〈e, t〉) as argu-
ments; but if we instantiate the syntactic schema for coordinating transitive
verbs, then the denotation of and takes relations as arguments (type
〈e, 〈e, t〉〉).

Equivalently, it is possible to think of (29) as a type-shifting rule, in
which case and is polysemous, where each distinct homophonous version
of and takes arguments of a single semantic type. Then there is one basic
lexical meaning for and (namely, the operator over truth values), and the
various other senses of and are related to each other and ultimately to the
basic lexical meaning by means of a type-shifting rule resembling (29).
See Heim and Kratzer (1998, p. 182) for a discussion of this type of
approach.

On either construal (type polymorphic versus type-shifting), the claim
is that and has a meaning that is capable of relating properties, or rela-

CONTINUATIONS AND QUANTIFICATION 227

tions, or any other semantic objects with a conjoinable type, in addition
to truth values.

Now consider one way of achieving a similar analysis of generalized
coordination in a continuized grammar. Let X be a syntactic category whose
direct semantic type is x.

(30) SYNTAX SEMANTICS

X → Xl and Xr λx.and(��Xl��(x))(��Xr��(x))

The meaning of and distributes the continuation belonging to the coordi-
nate structure across the conjuncts. Recalling that a continuation is the
default future of a computation, we can gloss this rule as saying, “Whatever
you are planning to do with the value of the coordinate structure, do it to
the left conjunct, also do it to the right conjunct, and conjoin the resulting
truth values.”

Just like (28), (30) schematizes over a range of conjoinable syntactic
categories. However, there is no need to state a separate recursive rule
characterizing the function denoted by the conjunction – the semantic rule
in (30) gives the desired result automatically. It mentions only the basic
truth-value operator and, and there is no need to construct semantic oper-
ators that take arguments having complex types.

Furthermore, there is no need to stipulate what counts as a conjoinable
type. The result of applying any continuized denotation to a continuation
(e.g., “��Xl��(x)”) is guaranteed to be a truth value, by construction. In other
words, the notion of a conjoinable type is built into the structure of the
continuation system. In the present context, we can restate this as follows:
the observation that conjoinable types are those types that “end in t” follows
from the claim that generalized coordination lives at the level of continu-
ations.

In sum, Partee and Rooth (1983) need a syntactic schema, a recursive
semantic definition, and a notion of conjoinable type. But if expressions
are allowed to manipulate their continuations, all that is needed is the single
syntactic schema in (30).

It might seem as if having a syntactic schema like (30) amounts to the
same kind of polymorphism as the Partee and Rooth account. But there is
a significant difference: Partee and Rooth have both syntactic polymorphism
(represented in rule (28)) and also lexical semantic type polymorphism
(as in rule (29), or, equivalently, using semantic type-shifting). On the
continuations account, there is no need to recapitulate the syntactic poly-
morphism in the semantics. As a result, the model-theoretic meaning
attributed to and is simpler on the continuations account: it has a single type
(namely, 〈〈t, t〉, t〉), and operates on truth values and nothing else.

228 CHRIS BARKER

Furthermore, the opportunity for this optimally simple meaning for
generalized and comes directly from continuizing the grammar. This is
because the recursive unpacking of the pointwise definition of Partee and
Rooth’s generalized and (as expressed by (29)) is built into the continua-
tion mechanism itself. To the extent that continuations are necessary
independently to handle quantification, we get a simple account of the
meaning of generalized coordination for free.

5 . T H E C O N T I N U AT I O N S C H E M A

As mentioned in section 2, the relationship between a direct grammar and
the equivalent continuized grammar can be expressed in a single schema.
This is important for making precise the sense in which continuization
constitutes a coherent, unitary operation.

The schema will show how to take a direct grammar G and produce an
equivalent continuized grammarG. Much of the complexity in stating the
schema will come from making it as general as possible. Literally any
grammar with a compositional semantics can be continuized – including,
incidentally, a grammar that has already been continuized, leading to
higher-order continuations.

Let G be a grammar for which each rule r has the following form:

〈Er(e1, . . . , en), C
r(c1, . . . , cn), M

r(m1, . . . , mn)〉

We say that rule r has arity n. The interpretation is as follows: if ei is a
well-formed expression of category ci with meaning mi for 0 < i ≤ n, then
Er(e1, . . . , en) is a well-formed expression of category Cr(c1, . . . , cn)
with meaning Mr(m1, . . . , mn).

In the context-free grammars used in this paper, the syntactic forma-
tion operation Er is always concatenation, and the meaning composition
function Mr is always functional application, but other syntactic and
semantic operations are possible. For instance, for some r, Er could be
head wrap, quantifying in, QR, etc.

Then for each rule r in G with arity n, the continuized grammarG will
have n! corresponding rules, one for each distinct permutation function f,
where f is an automorphism on the first n ordinals. For each such f, there
will be a rule inG of the following form:

〈Er(e1, . . . , en), C
r(c1, . . . , cn), Mf

r(m̂1, . . . , m̂n)〉

where Mf
r satisfies the following constraint:

(31) The Continuation Schema: Mf
r(m̂1, . . . , m̂n) =

λx.m̂f(1)(λxf(1)[. . . [m̂f(n)(λxf(n)[x(Mr(x1, . . . , xn))])] . . .])

CONTINUATIONS AND QUANTIFICATION 229

(Here and throughout the paper I use square brackets instead of paren-
theses purely as a visual aid to clarity.) The hats over some semantic
values (‘m̂’) indicate that they are continuized meanings that take a con-
tinuation as their only argument. We shall see that the permutation functions
f determine the scoping priority of the subconstituents.

It will be helpful to examine some specific instances of the schema, in
order to illustrate its behavior, and also to show that the schemata given
earlier actually are instances of the general schema, as promised. In addition,
the structure of the proof presented later in this section will closely follow
the examples given here.

For rules of arity n = 0 (i.e., a lexical entry), n! = 1, in which case the
only permutation function f is undefined for every integer, and the following
correspondence satisfies the Continuation Schema:

(32) Rule in G: 〈Er, Cr, Mr〉
Rule inG: 〈Er, Cr, λx.x(Mr)〉

This is equivalent to the schema for lexical items given in (9).
For rules of arity n = 1 (unary productions), n! = 1, and the only per-

mutation function f maps 1 onto 1 and is undefined otherwise:

(33) Rule in G: 〈Er(e1), C
r(c1), M

r(m1)〉
Rule inG: 〈Er(e1), C

r(c1), λx.m̂1(λx1.x(Mr(x1)))〉

There is one unary rule in the fragment in the Appendix (the PP rule
involving semantically transparent prepositions).

For rules of arity n = 2, n! = 2, and there are two permutation func-
tions, f and g:

(34) Rule in G: 〈Er(e1, e2), C
r(c1, c2), M

r(m1, m2)〉
Rules inG: 〈Er(e1, e2), C

r(c1, c2), Mf
r(m̂1, m̂2)〉

〈Er(e1, e2), C
r(c1, c2), Mg

r(m̂1, m̂2)〉
where
Mf

r(m̂1, m̂2) = λx.m̂f(1)(λxf(1).m̂f(2)(λxf(2).x(Mr(x1, x2))))
Mg

r(m̂1, m̂2) = λx.m̂g(1)(λxg(1).m̂g(2)(λxg(2).x(Mr(x1, x2))))

Assuming that f maps 1 to 1 and 2 to 2, and g maps 1 to 2 and 2 to 1,
the rules in (34) are equivalent to those in (35):

(35) Rules inG:
〈Er(e1, e2), C

r(c1, c2), λx.m̂1(λx1.m̂2(λx2.x(Mr(x1, x2))))〉
〈Er(e1, e2), C

r(c1, c2), λx.m̂2(λx2.m̂1(λx1.x(Mr(x1, x2))))〉

This equivalence shows that the f rule gives priority to the first sub-
expression, e1, and g gives priority to the second subexpression, e2. The

230 CHRIS BARKER

meaning operation Mf
r corresponds to the second schema in (9) as well as

(18a), and Mg
r corresponds to (18b).

For rules of arity n = 3, n! = 6, and so on.
Clearly G andG are strongly equivalent syntactically, since their syn-

tactic components are identical. They are also strongly equivalent
semantically in the following sense: Let e be an expression of category c
associated with a meaning m that is licensed by rule r in G. Then for
every corresponding m̂ thatG assigns as a possible meaning to e, m̂(λx.x)
= m. (This theorem is analogous to Plotkin’s (1975) Simulation Theorem
proving that a particular CPS transform captures the meaning of the original
program.) In order to prove this claim, I will prove a slightly more general
proposition.

Lemma: For any function g, m̂(λx.g(x)) = g(m).

Proof: The proof involves recursion on the syntactic structure of e. The base
case is when r is arity 0, i.e., e is a lexical item. Instantiating the con-
tinuation schema, the meaningG associates e with is m̂ = λx.x(m). Therefore
m̂(λx.g(x)) = [λx.x(m)](λx.g(x)) = g(m), and the claim is true. Next, consider
the case in which r is of arity 1. Assume that G associates e1 with the
meaning m1 and thatG associates e1 with the meaning m̂1. Then G associ-
ates e with the meaning m = Mr(m1). There is exactly one possible choice
for f (namely, the identity function, so that f(1) = 1), and we have

m̂ = λx.m̂f(1)(λxf(1).x(Mr(x1))) = λx.m̂1(λx1.x(Mr(x1)))

Let g be an arbitrary function. Then

m̂(λx.g(x)) = [λx.m̂1(λx1.x(Mr(x1)))](λx.g(x))
= m̂1(λx1.[λx.g(x)](Mr(x1)))
= m̂1(λx1.g(Mr(x1)))

Choose g′ = λx.g(Mr(x)). Then m̂1(λx1.g(Mr(x1))) = m̂1(λx1.g′(x1)). By the
recursive assumption,

m̂1(λx1.g′(x1)) = g′(m1) = [λx.g(Mr(x))](m1)
= g(Mr(m1)) = g(m).

Thus the claim holds for expressions licensed by rules of arity 1. If e is
licensed by a rule r of arity 2, e has exactly two immediate subconstituents,

CONTINUATIONS AND QUANTIFICATION 231

e1 and e2. Assume that G associates e1 with meaning m1 and e2 with meaning
m2, and thatG associates e1 with meaning m̂1 and e2 with meaning m̂2.
Then G associates e with the meaning m = Mr(m1, m2). There are two
possible choices for f. First consider when f is the identity function, so
that f(1) = 1 and f(2) = 2. Instantiating the continuation schema, we have

m̂ = λx.m̂f(1)(λxf(1).m̂f(2)(λxf(2).x(Mr(x1, x2))))
= λx.m̂1(λx1.m̂2(λx2.x(Mr(x1, x2))))

Once again, let g be an arbitrary function. Then

m̂(λx.g(x)) = [λx.m̂1(λx1.m̂2(λx2.x(Mr(x1, x2))))](λx.g(x))
= m̂1(λx1.m̂2(λx2.g(Mr(x1, x2))))

Choose g′ = λx.g(Mr(x1, x)). By the recursive assumption applied to m̂2,

m̂(λx.g(x)) = m̂1(λx1.m̂2(λx2.g′(x2)))
= m̂1(λx1.g′(m2)) = m̂1(λx1.g(Mr(x1, m2)))

Now choose g″ = λx.g(Mr(x, m2)). By the recursive assumption applied to
m̂1, we have

m̂(λx.g(x)) = m̂1(λx1.g″(x1)) = g″(m1) = g(Mr(m1, m2)) = g(m)

Analogous reasoning holds for the other choice of f, on which f(1)= 2 and
f(2) = 1. In general, for any number of arguments n and for any choice of
permutation function f, we can choose functions g, g′, . . . in a way that
allows us to apply the recursive assumption from the innermost continua-
tion out, i.e., in the order m̂f(n), m̂f(n – 1), . . . , m̂f(1).

�

Theorem (Simulation): m̂(λx.x) = m.

Proof: Choose g = (λx.x) and the result follows immediately from the
lemma. �

Of course the semantic equivalence between G andG does not hold in
general if we add lexical items or composition rules toG that are not related
to the basic grammar by the continuation schema. Indeed, adding rules
like those in (13) is what allows quantificational readings and scope
ambiguity.

232 CHRIS BARKER

6. C O M P O S I T I O N A L I T Y

As discussed above, a continuized grammar is compositional in the sense
that the meaning of a complex syntactic constituent is a function only of
the meanings of its immediate subconstituents and the manner in which they
are combined.

Is compositionality an empirical issue, or formally vacuous and therefore
merely a methodological preference? A number of mathematical argu-
ments purport to prove under one set of assumptions or another that any
syntax can be associated with literally any set of meanings in a composi-
tional fashion. In particular, Janssen (1986) proves that an arbitrary meaning
relation can be embodied by a compositional grammar if we are allowed
arbitrarily abstract syntactic analyses (see comments of Westerståhl 1998).
In other words, allowing LF representations to differ in unconstrained
ways from surface syntax removes all empirical force from assuming com-
positionality. This is the sense in which LF-based theories of quantification
such as QR weaken compositionality. Certainly anyone with a strong
commitment to compositionality will prefer a theory on which deviations
from surface syntax are kept to an absolute minimum. The ideal is what
Jacobson (e.g., 1999) calls DIRECT COMPOSITIONALITY, in which each surface
syntactic constituent has a well-formed denotation and there is no appeal
to a level of Logical Form distinct from surface structure. We shall see
that continuations are compatible with Direct Compositionality.

Zadrozny (1994) proves a complementary theorem: holding the syntax
constant, if the denotations are allowed be abstract in certain ways, once
again it is possible to provide a given syntax with any desired meaning
relation in an allegedly compositional fashion. More specifically, Zadrozny’s
construction replaces normal meanings with functional meanings. Should
we worry, then, since continuizing a grammar replaces normal meanings
with functions? No. Dever (1999) shows that Zadrozny’s result crucially
depends on the fact that Zadrozny’s denotations take the expression itself
as an argument. Since in Zadrozny’s construction the meaning of an
expression depends in part on its form (rather than on just the denotations
of its subconstituents), it is no wonder that it has more than compositional
power.

Pelletier (1994) explains one way that compositionality can clearly be
falsified, which establishes that compositionality is empirically substan-
tive. If there were a natural language in which φ and ψ were two distinct
expressions that meant the same thing, and F(φ) and F(ψ) were well-formed
syntactic expressions that meant different things (i.e., �F(φ)� ≠ �F(ψ)�), there
simply would be no compositional way of assigning meanings to these

CONTINUATIONS AND QUANTIFICATION 233

expressions. For instance, to repeat a standard example, if you believe
that the sentences Hesperus is a planet and Phosphorus is a planet denote
the same proposition, and that there is a unique series of syntactic opera-
tions that allows construction of both of the sentences Jeremy believes
that Hesperus is a planet and Jeremy believes that Phosphorus is a planet,
and that these two more complex sentences are capable of having different
truth values – then you believe that English does not have a compositional
semantics.

In recognition of this reasoning, Dever (1999, p. 314) imposes a require-
ment that a theory is compositional only if the meaning of complex
expressions remains constant under substitution of subexpressions with
equivalent meanings. Zadrozny’s allegedly compositional construction fails
to meet this requirement, so by Dever’s criterion, Zadrozny’s meaning
relation fails to be compositional. In any case, the continuized grammars
considered in this paper clearly satisfy Dever’s substitutability requirement.

However, there is an aspect of the continuation approach that threatens
the spirit of compositionality in a more serious way. Compositionality, at
least as Montague formulated it, requires that a syntactic analysis fully
disambiguates the expression in question. As we have seen, the denota-
tion of an expression containing quantifiers depends in part on the choice
of a permutation function, since the permutation function determines the
scope priority of the constituents. Therefore, in order to obey the letter of
the law of compositionality, it is necessary for the syntactic analysis to
specify the choice of a permutation function. This is easy enough to do
on a mechanical level by annotating syntactic constructions with the index
of a permutation function. But doing so implicitly claims that quantifier
scope ambiguity is a syntactic ambiguity, and the result is a (mild) form
of hypothesizing an LF distinct from surface syntax.

The alternative is to admit, contra Montague, that there is such a thing
as semantic ambiguity. A number of other researchers have come to such
a conclusion. For instance, Dalrymple et al. (1997, p. 229) allow “ambi-
guities of semantic interpretation”; this point is elaborated by Crouch (1999,
p. 48). Pelletier (1994, p. 21) characterizes the most extreme form of this
position as follows: “It seems to me that all of these [LF-based treatments
of quantification] are rather desperate measures in that they try to invent
a syntactic ambiguity when we know perfectly well that in reality there is
no syntactic ambiguity. Admittedly there is a semantic ambiguity . . .”
(emphasis as in original).

What I am suggesting is that a single syntactic formation operation can
be associated with more than one semantic interpretation. The resulting
notion of compositionality is as follows:

234 CHRIS BARKER

(36) The meaning of a syntactically complex expression is a function
only of the meaning of that expression’s immediate subexpres-
sions, the syntactic way in which they are combined, and their
semantic mode of composition.

In the system here, each permutation function determines one “mode of
composition.” This places the burden of scope ambiguity on something
that is neither syntactic nor properly semantic, but at the interface: scope
ambiguity is metacompositional.

Modifying the principle of compositionality as in (36) does interfere
slightly with Montague’s conception of the meaning relation as a homo-
morphism from a syntactic algebra into a meaning algebra. If maintaining
the conception of meaning as a homomorphism seems important, then we
need to consider as our disambiguated objects syntactic analyses in com-
bination with a mode of composition. Call these elaborated analyses
CONSTRUALS. Then the syntactic algebra induces an algebra on the set of
construals in a natural way, and we can use the algebra over the set of
construals as the domain of the meaning homomorphism. Regardless of
whether it seems advisable to maintain the meaning relation as a homo-
morphism, the conception of compositionality in (36) does not interfere
in the slightest with the degree to which compositionality imposes sub-
stantive empirical constraints on meaning relations.

7 . C O N C L U S I O N S

The continuation approach to quantification is most similar in method-
ological outlook to Hendriks’ Flexible Types system. Both approaches
respect syntactic structure, i.e., they interpret overt syntactic structure
directly without recourse to invisible manipulations at LF; neither uses
any kind of storage mechanism; and both are strictly compositional.

In the Flexible Types system, the value-raising schema and the argument-
raising schema in effect allow a predicate to climb up the type hierarchy
as high as necessary in order to swallow as much of its computational future
as its arguments need to take scope over. Since scope can be displaced
arbitrarily far, the result for Flexible Types is that even simple lexical
transitive verbs must be infinitely polysemous.

Perhaps continuization is the underlying generalization that the various
type-shifting rules of the Flexible Types system conspire to simulate.4

CONTINUATIONS AND QUANTIFICATION 235

4 Actually, it appears that the Flexible Types system can simulate higher-order continua-
tions, which means that it is significantly more powerful than the first-order continuations
used here.

Alternatively, it is possible to view the type-shifting schemata of the Flexible
Types system as a decomposition of continuations into more basic type-
shifting operations. One problem with this view is that it is difficult to
see how either Argument Raising or Value Raising is simpler than the
continuation schema given in section 5.

I have claimed that continuations do not rely on type-shifting. Yet there
is an unmistakable flavor of type-shifting throughout the continuation
enterprise. One way to say it is that instead of type-shifting expressions,
we are type-shifting composition rules. Perhaps an even better way to
view it would be to say that it is the entire grammar as a whole that has
been shifted. I will make two points in response to this thought. First,
once a grammar has been shifted to its continuized version, there is no
need to use the unshifted grammar; in contrast, the point of most type-
shifting analyses (e.g., Partee and Rooth 1983; Partee 1987) is that both
the shifted and the unshifted version of a meaning are needed in different
situations.

Second, the proposal here is by no means the only example of type-
shifting a grammar as a whole. In the dynamic grammars of Irene Heim,
Hans Kamp, and of Jeroen Groenendijk and Martin Stokhof, among others,
expression denotations and composition rules are all shifted so that
sentences denote update functions on contexts. Thus the various kinds of
dynamic semantics are well-known and respectable cases of type-shifting
the grammar as a whole.

In fact, dynamic interpretation constitutes a partial continuization in
which only the category S has been continuized (rather than continuizing
uniformly throughout the grammar, as is done here). In particular, Chierchia
(1995, p. 81) presents his dynamic logic in terms very much like what we
are calling continuations (though he uses the word ‘continuation’ in an
unformalized sense that seems to be slightly different from the one here).
In Chierchia’s framework, sentence denotations are expressed by logical
forms that contain a placeholder standing for the content of subsequent
discourse. As he puts it, “metaphorically speaking, we add to [the inter-
pretation of S] a hook onto which incoming information can be hung.”
Obviously, this sounds very much like a continuized meaning.

Thus continuization not only gives rise to the generalized quantifier
conception of NP meaning as a special case, it also naturally gives rise to
the conception of S meaning as a dynamic context update function. More
specifically, since the semantic type of a continuized clause is a function
from sentence continuations to truth values (type 〈〈t, t〉, t〉), this is exactly
the sort of meaning required in order to compose sequences of sentences
in a discourse in the way that Chierchia advocates.

236 CHRIS BARKER

To summarize: From an empirical point of view, the continuation analysis
automatically makes good predictions concerning linear versus inverse scope
within NP as well as concerning NP as a scope island, where other accounts
have considerable difficulty.

From a methodological point of view, taking the principle of composi-
tionality seriously means preferring analyses in which logical form stays
as close to surface syntax as possible. Hendriks’ Flexible Types system
shows that there are compositional alternatives on which interpretation
proceeds directly from surface syntax, as long as we are willing to intro-
duce radical type-shifting. The continuation analysis developed here provides
a second direct-compositional analysis (‘direct’ in Jacobson’s sense) for
quantification – moreover, one that does not depend on type-shifting.

Finally, from an explanatory point of view, continuations provide a new
and satisfying way of unifying several aspects of nominal quantification:
merely stating the truth conditions of quantificational expressions in terms
of continuations accounts for the duality of NP meaning, scope displace-
ment, and scope ambiguity. In addition, continuations provide a semantic
analysis of generalized coordination that is significantly simpler than other
accounts.

8 . A P P E N D I X : F R A G M E N T W I T H C O N T I N U AT I O N S

First I give a direct grammar without quantification that will serve as the
input to the Continuation Schema (and will afterward be discarded):

(37) SYNTAX DIRECT SEMANTICS

VP → Vt NP �Vt�(�NP�)
VP → Vs S �Vs�(�S�)
NP → Det N �Det�(�N�)
N → N PP �PP�(�N�)
N → Nr PPof �Nr�(�PP�)
PP → P NP �P�(�NP�)
PPof → of NP �NP�
NP → John j
P → from from
VP → left left
Vt → saw saw
Vs → thought thought
Nr → friend friend-of
Det → the the
N → dog dog

CONTINUATIONS AND QUANTIFICATION 237

This grammar gives rise to the following continuized grammar by appli-
cation of the Continuation Schema discussed in section 5. We will need
three additional variable symbols: T of type 〈t, 〈e, t〉〉 for sentential-com-
plement-taking verbs, D of type 〈〈e, t〉, e〉 for determiners, and M of type
〈〈e, t〉, 〈e, t〉〉 for prepositional phrase nominal modifiers.

(38) SYNTAX CONTINUIZED SEMANTICS

VP → Vt NP λP.��Vt��(λR.��NP��(λx.P(Rx)))
VP → Vt NP λP.��NP��(λx.��Vt��(λR.P(Rx)))
VP → Vs S λP.��Vs��(λT.��S��(λp.P(Tp)))
VP → Vs S λP.��S��(λp.��Vs��(λT.P(Tp)))
NP → Det N λx.��Det��(λD.��N��(λP.x(DP)))
NP → Det N λx.��N��(λP.��Det��(λD.x(DP)))
N → N PP λP.��N��(λP.��PP��(λM.P(MP)))
N → N PP λP.��PP��(λM.��N��(λP.P(MP)))
N → Nr PPof λP.��Nr��(λR.��PPof��(λx.P(Rx)))
N → Nr PPof λP.��PPof��(λx.��Nr��(λR.P(Rx)))
PP → P NP λM.��P��(λR.��NP��(λx.M(Rx)))
PP → P NP λM.��NP��(λx.��P��(λR.M(Rx)))
PPof → of NP λx.��NP��(λx.x(x))
NP → John λx.x(j)
P → from λR.R(from)
VP → left λP.P(left)
Vt → saw λR.R(saw)
Vs → thought λT.T (thought)
Nr → friend λR.R(friend-of)
Det → the λD.D(the)
N → dog λP.P(dog)

Determiners and choice functions. Note that the basic grammar in (37)
analyzes the determiner the as a CHOICE FUNCTION (type 〈〈e, t〉, e〉): a
function that maps a nominal property to an individual. For each property
P, the choice function denoted by the picks out one element of P; for
instance, the(dog) denotes some particular element from the set of dogs.
Choice functions make appealing denotations for at least some determiners
(Egli and von Heusinger 1995; Kratzer 1998, inter alia).

But what type will a quantificational determiner be? Since all members
of a syntactic category have the same semantic type, it will be the same
as the type of a continuized direct determiner, i.e., type 〈〈〈〈e, t〉, e〉, t〉, t〉.

For instance, given a variable f over choice functions of type 〈〈e, t〉, e〉,
here is a lexical entry of the appropriate type for every:

238 CHRIS BARKER

(39) Det→ every λD∀f.D(f)

This denotation quantifies over choice functions, rather than over individ-
uals. (It is necessary to restrict the quantification to consider only those
functions that map each [non-empty] set to a member of that set; these
and similar technical issues are discussed in some depth in the choice
function literature cited above.) For instance,

��John saw every man��(λp.p) = ∀f.saw(f(man))j,

which can be paraphrased as ‘For every way of choosing a man, that man
was seen by John’.

Things get slightly more complicated for proportional quantificational
determiners such as most. Instead of denoting a set of sets of individuals
as in the (extensional) generalized quantifier approach (e.g., Barwise and
Cooper 1981), most (and quantificational determiners in general) will denote
sets of sets of choice functions. Let C be a variable over sets of choice
functions:

(40) a. Det → most λD∃C ∈ MOST: ∀f ∈ C.D(f)
b. MOST = {C: ∀P.|P | < (2 ∗ |{x: ∃f ∈ C.x = f (P)}|)}

An alternative (not pursued here) would be to allow choice functions to pick
out mereological sums of individuals.

To complete the fragment, we must add the rules that make S a scope
island, as discussed above in section 2.4. In addition, we must provide
rules for the lexical NPs and the quantificational determiners, and instan-
tiate the syntactic schema for generalized conjunction for the categories
S, VP, Vt, and NP. The following rules, then, constitute the properly quan-
tificational component of the fragment:

(41) S → NP VP λp.p(��NP��(λx.��VP��(λP.Px)))
S → NP VP λp.p(��VP��(λP.��NP��(λx.Px)))
NP → everyone λx∀x.x(x)
NP → someone λx∃x.x(x)
Det → every λD∀f.D(f)
Det → a λD∃f.D(f)
Det → no λD¬∃f.D(f)
Det → most λD∃C ∈ MOST.∀f ∈ C.D(f)
S → S1 and S2 λp.and(��S1��p)(��S2��p)
VP → VP1 and VP2 λP.and(��VP1��P)(��VP2��P)
Vt → Vt1 and Vt2 λR.and(��Vt1��R)(��Vt2��R)
NP → NP1 and NP2 λx.and(��NP1��x)(��NP2��x)

CONTINUATIONS AND QUANTIFICATION 239

The result of combining the rules in (38) and (41) is a context-free grammar
with rule-to-rule interpretation that treats quantification, scope displacement,
scope ambiguity, and generalized conjunction without movement, storage,
type-shifting, or type polymorphism.

For example, here is an analysis for a sentence similar to the sentences
in (19), which were designed to show that the continuized grammar auto-
matically allows unbounded scope displacement:

(42) a. Someone saw the friend of the friend of everyone.
b. ∃x∀y.saw(the(friend-of(the(friend-of y)))) x
c. ∀y∃x.saw(the(friend-of(the(friend-of y)))) x

Clearly we can insert an arbitrary number of repetitions of the string the
friend of before everyone, and the grammar will produce both a linear scope
reading as in (42b), on which there is a single person who saw, for each
person y, the unique friend of the unique friend of y; and also an inverse
scope reading as in (42c), on which for every person y there is a poten-
tially different person x who saw the friend of the friend of y.

Finally, here are the four logically distinct interpretations provided by
the fragment for the sentence Someone saw a friend of everyone:

(43) a. ∃y∃f∀x.saw(f(friend-of x)) y
b. ∃y∀x∃f.saw(f(friend-of x)) y
c. ∃f∀x∃y.saw(f(friend-of x)) y
d. ∀x∃f∃y.saw(f(friend-of x)) y

The variables y, f, and x correspond to the quantificational elements
someone, a, and everyone, respectively. As discussed with respect to
example (23) in section 3, because the fragment respects the Integrity con-
straint, it correctly predicts that there should be four scopings instead of
the factorial six.

R E F E R E N C E S

Barker, C.: 2001, ‘Integrity: A Syntactic Constraint on Quantificational Scoping’, in K.
Megerdoomian and L. A. Bar-el (eds.), Proceedings of WCCFL 20, pp. 101–114.
Cascadilla Press, Somerville, Mass.

Barwise, J. and R. Cooper: 1981, ‘Generalized Quantifiers in Natural Language’, Linguistics
and Philosophy 4, 159–200.

Chierchia, G.: 1995, Dynamics of Meaning, the University of Chicago Press, Chicago.
Chierchia, G. and S. McConnell-Ginet: 1990, Introduction to Formal Semantics, MIT Press,

Cambridge, Mass.
Crouch, R.: 1999, ‘Ellipsis and Glue Languages’, in S. Lappin and E. Benmamoun (eds.),

Fragments: Studies in Ellipsis and Gapping, pp. 32–67. Oxford University Press, Oxford.

240 CHRIS BARKER

Dalrymple, M., J. Lamping, F. Pereira, and V. Saraswat: 1997, ‘Quantifiers, Anaphora, and
Intensionality’, Journal of Logic, Language, and Information 6, 219–273.

Danvy, O. and C. A. Talcott: 1998, ‘Introduction (to a special issue on continuations)’, Higher-
Order and Symbolic Computation 11(2), 115–116.

Dever, J.: 1999, ‘Compositionality as Methodology’, Linguistics and Philosophy 22,
311–326.

Egli, U. and K. Heusinger (eds.): 1995, Choice Functions in Natural Language Semantics,
Arbeitspapier Nr. 71, Fachgruppe Sprachwissenschaft, Universität Konstanz.

de Groote, P.: 2001, ‘Continuations, Type Raising, and Classical Logic’, in R. van Rooy
and M. Stokhof (eds.), Proceedings of the Thirteenth Amsterdam Colloquium, pp. 97–101.
Institute for Logic, Language and Computation, Universiteit van Amsterdam.

Heim, I. and A. Kratzer: 1998, Semantics in Generative Grammar, Blackwell, Oxford.
Hendriks, H.: 1988, ‘Type Change in Semantics: The Scope of Quantification and

Coordination’, in E. Klein and J. van Benthem (eds.), Categories, Polymorphism and
Unification, pp. 96–119. ITLI, Amsterdam.

Hendriks, H.: 1993, Studied Flexibility, ILLC Dissertation Series, Amsterdam.
Jacobson, P.: 1999, ‘Towards a Variable Free Semantics’, Linguistics and Philosophy 22,

117–184.
Janssen, T.: 1986, Foundations and Applications of Montague Grammar, Part I: Philosophy,

Framework, Computer Science (CWI Tract 19), Center of Mathematics and Computer
Science, Amsterdam.

Keenan, E.: 1987, ‘Semantic Case Theory’, in J. Groenendijk, M. Stokhof, and P. Veltmann
(eds.), Proceedings of the 6th Amsterdam Colloquium, pp. 109–132. Institute for Logic,
Language and Computation, Universiteit van Amsterdam.

Kelsey, R., W. Clinger, and J. Rees (eds.): 1998, ‘The Revised5 Report on the Algorithmic
Language Scheme’, Higher-Order and Symbolic Computation 11, 7–105.

Kratzer, A.: 1998, ‘Scope or Pseudoscope? Are There Wide-Scope Indefinites?’, in S.
Rothstein (ed.), Events and Grammar, pp. 163–196. Kluwer, Dordrecht.

May, R.: 1985, Logical Form: Its Structure and Derivation, MIT Press, Cambridge, Mass.
Meyer, A. R. and M. Wand: 1985, ‘Continuation Semantics in Typed Lambda-Calculi

(summary)’, in R. Parikh (ed.), Logics of Programs – Proceedings, pp. 219–224. Springer-
Verlag, New York.

Montague, R.: 1973, ‘The Proper Treatment of Quantification in English’, in J. Hintikka, J.
Moravcsik, and P. Suppes (eds.), Approaches to Natural Language: Proceedings of the
1970 Stanford Workshop on Grammar and Semantics, pp. 221–242. Reidel, Dordrecht.
Also in R. Thomason (ed.), Formal Philosophy: Selected Papers of Richard Montague,
pp. 247–270. Yale University Press, New Haven, Conn., 1974.

Partee, B. H.: 1987, ‘Noun Phrase Interpretation and Type-Shifting Principles’, in J.
Groenendijk, D. de Jongh, and M. Stokhof (eds.), Studies in Discourse Representation
Theory and the Theory of Generalized Quantifiers, pp. 115–143. Foris, Dordrecht.

Partee, B. H. and M. Rooth: 1983, ‘Generalized Conjunction and Type Ambiguity’, in R.
Bäuerle, C. Schwarze, and A. von Stechow (eds.), Meaning, Use, and Interpretation of
Language, pp. 361–383. Walter de Gruyter, Berlin.

Pelletier, F. J.: 1994, ‘The Principle of Semantic Compositionality’, Topoi 13, 11–24.
Plotkin, G. D.: 1975, ‘Call-by-Name, Call-by-Value and the Lambda-Calculus’, Theoretical

Computer Science 1, 125–159.
Reinhart, T.: 1979, ‘Syntactic Domains for Semantic Rules’, in F. Guenthner and S. J. Schmidt

(eds.), Formal Semantics and Pragmatics for Natural Language, pp. 107–130. Reidel,
Dordrecht.

Reynolds, J. C.: 1993, ‘The Discoveries of Continuations’, Lisp and Symbolic Computation
6, 233–247.

Shan, C-C.: 2002, ‘A Continuation Semantics of Interrogatives that Accounts for Baker’s

CONTINUATIONS AND QUANTIFICATION 241

Ambiguity’, in B. Jackson (ed.), Proceedings of SALT XII, Cornell University Press, Ithaca,
N.Y.

Steedman, M.: 2000, The Syntactic Process, MIT Press, Cambridge, Mass.
Westerståhl, D.: 1998, ‘On Mathematical Proofs of the Vacuity of Compositionality’,

Linguistics and Philosophy 21, 635–643.
Zadrozny, W.: 1994, ‘From Compositional to Systematic Semantics’, Linguistics and

Philosophy 17, 329–342.

0108 Department of Linguistics
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093
USA
E-mail: barker@ucsd.edu

242 CHRIS BARKER

