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Synopsis: The continuation of an expression is a portion of its sur-
rounding context. This book proposes and defends the Continua-
tion Hypothesis: that the meaning of a natural language expression
can depend on its own continuation (that is, it can denote a function
on its surrounding context). Part I develops a continuation-based
theory of scope and quantificational binding. Taking inspiration
from the theory of computer programming languages, and unlike
other accounts of scope, continuations provide fine-grained con-
trol over the order in which expressions are evaluated (processed).
This leads to a principled yet nuanced explanation for sensitiv-
ity to order in scope-related phenomena such as scope ambiguity,
crossover, superiority, reconstruction, negative polarity licensing,
dynamic anaphora, and donkey anaphora. Throughout Part I, con-
crete, explicit formal analyses are presented in a novel ‘tower’ for-
mat, which is designed to be easy to learn and easy to use, with dia-
grams, derivations, and detailed motivation and explanation. Part II
develops an innovative substructural logic for reasoning about con-
tinuations. This enables an analysis of the notoriously challenging
compositional semantics of adjectives such as ”same” in terms of
parasitic scope and recursive scope. In a separate investigation,
certain cases of ellipsis are treated as anaphora to a continuation,
leading to a new explanation for a subtype of sluicing known as
sprouting. Attention is given throughout the book to the formal
and computational properties of the analyses. Taken together, the
empirical case studies support the conclusion that any complete
and adequate theory of natural language meaning must recognize
continuations as an essential explanatory element.
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Notational conventions

e! t Types: Instead of writing ht, si for the type of a function from objects
of type t into objects of type s , we follow the convention in computer
science, and write t ! s . So the type of an extensional verb phrase will
be e! t.

saw j m Associativity for values: Values associate from left to right. An expres-
sion written saw j m is equivalent to (saw j)m.

e! e! t Associativity for types: Since values associate from left to right, types
correspondingly associate from right to left. This means that the type
e! e! t is shorthand for e! (e! t) (an extensional transitive verb).
The type of an extensional generalized quantifier must be written with
parentheses, i.e., (e! t)! t.

labc.M Dot notation for lambda abstraction: We adopt the standard convention
that lalblcM can be abbreviated as labc.M. We will assume that the
scope of the lambdas before the dot extends as far to the right as pos-
sible. Therefore the expression lx. yesterday (call x)m is equivalent to
lx
�
(yesterday (call x))m

�
.

g[ ] Contexts, holes and plugs: Throughout the book, we will consider logi-
cal expressions that have a hole (‘[ ]’) somewhere in them, e.g., lx.(x[ ])y.
We will say that an expression that contains exactly one hole is a (cer-
tain kind of) context. Contexts can have their holes plugged. This means
replacing the hole (‘[ ]’) with some expression. For instance, if g[ ] =
lx.(x[ ])y, then g[w] = lx.(xw)y. Plugs can be complex expressions
(g[(ww)] = lx.(x(ww))y). We allow a context to be plugged by a con-
text. For instance, if we plug the hole in g[ ] with itself, we get g[g[ ]] =
lx.x(lx.(x[ ])y)y, which has exactly one hole in it, so the net result
is once again a context. See sections 1.3 and 13.2, as well as Shan
(2005):26 ff., and Shan (2005) chapter 3 for additional discussion.
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Introduction

This book is about continuations. It argues that continuations are an essential
component of a complete understanding of natural language meaning.

(1) The continuation hypothesis: some natural language expressions de-
note functions on their continuations, i.e., functions that take their own
semantic context as an argument.

The main way that we will argue in favor of this hypothesis is by providing analy-
ses of a variety of natural language phenomena whose insights depend on explicit
reference to continuations.

What’s a continuation?

A CONTINUATION is a portion of the context surrounding an expression.

(2) John said [Mary called everyone yesterday] with relief.

In (2), the continuation of the expression everyone, relative to the bracketed em-
bedded clause that contains it, is the remainder of the embedded clause after ev-
eryone has been removed. This material includes the lexical items Mary, called,
and yesterday.

Based on the string presentation, this might appear to be a discontinuous ob-
ject, but the contiguous nature of the continuation becomes immediately apparent
when we consider the syntactic phrase structure tree:

1
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(3)

S

VP

PP

reliefwith

VP

S

VP

yesterdayVP

everyonecalled

Mary

said

John

In this tree, the continuation of everyone relative to the embedded clause is the
contiguous portion of the tree dominating Mary, called, and yesterday, but with
everyone removed. More schematically, we have the following diagram:

(4)

CONTINUATION

In the example at hand, the unshaded upper notched triangle corresponds to the
portion of the structure in which the smaller clause is embedded, and includes
John, said, and with relief. The middle grey notched triangle corresponds to the
material over which the scope-taker everyone takes scope—its continuation. And
the smallest unshaded unnotched triangle corresponds to the scope-taker everyone.

We will use schematic diagrams like this one from time to time throughout the
book. We’ll call them tangram diagrams, after the puzzle game in which a set of
flat geometric shapes are rearranged into a variety of larger shapes.

Since we will be primarily concerned with meaning, we will concentrate on
semantic context, rather than, say, phonological context or syntactic context. In
the example above, then, the semantic continuation of everyone relative to the
bracketed clause is the meaning of that clause with the contribution of everyone
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abstracted, namely, the property of being called yesterday by Mary, which can be
rendered as lx.yesterday(called x) m.

What makes continuations essential?

The semantic continuation identified in (2) is what the quantifier everyone
takes for its semantic argument, its ‘nuclear scope’. In general, identifying the
semantic argument of a scope-taking expression is the same thing as identifying
(one of its) continuations. Thus scope-taking is the most compelling application
of continuations in natural language.

But it is not enough for us to show that continuations provide an elegant way
to conceptualize scope-taking, given that there are other effective strategies for
handling scope-taking that do not explicitly involve continuations, such as Quan-
tifier Raising, Flexible Montague Grammar, and so on. To make a strong case that
continuations are essential, we must argue that continuations provide insights that
are not available in other approaches.

We find inspiration for such insights in neighboring disciplines. Continua-
tions are an idea that has been explored in some depth in the theory of computer
programming languages, where they have been used (among many applications)
to characterize order of evaluation of expressions in a computer program, as
explained in section 12.1. And in general, one of the distinctive advantages of
continuations is that they provide a way to reason explicitly about the order in
which a computation unfolds.

We will argue that a number of phenomena in natural language depend on or-
der of evaluation. These include quantificational binding, crossover, reconstruc-
tion, negative polarity licensing, and donkey anaphora.

In particular, one of the central results will be a robust explanation of crossover
in terms of order of evaluation.
(5) a. Everyonei loves hisi mother.

b. *Hisi mother loves everyonei.

When the quantifier everyone precedes the pronoun his, as in (5a), the binding
relationship indicated by the subscripts is available, in which case (5a) expresses a
generalization about filial duty: every person loves that person’s mother. But when
the quantifier follows the pronoun, as in (5b), the indicated binding relationship
is not possible: (5b) cannot express a general thought about family relationships,
namely, that each person’s mother loves that person. We will say that (5b) is a
weak crossover violation.

Ever since Reinhart (1983), standard approaches to crossover (e.g., Büring
(2005)) have rejected the relevance of linear order in favor of purely hierarchical
relationships based on c-command. However, as explained in chapter 2, following
Shan and Barker (2006) and Barker (2012), we believe that c-command is not
a requirement for quantificational binding. As a result, we endorse a minority
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tradition including Bresnan (1994, 1998), Safir (2004a,b), and Jäger (2005), who
argue that in English and in many other languages, some kind of order plays a role
in crossover.

Crucially, we will develop an explanation for crossover not in terms of linear
order, but rather in terms of evaluation order. One reason linear order is not an
adequate explanation is that there are systematic cases in which a quantifier can
linearly follow a pronoun that it nevertheless can bind:

(6) a. Which of hisi relatives does every mani love the most?
b. The relative of hisi that every mani loves most is his mother.

We explain in some detail how our continuation-based approach accounts for these
so-called reconstruction effects. In brief, the independently-motivated semantics
of wh-fronting and relative clause formation delay the evaluation of the pronoun
until after the evaluation of the quantifier. So on our continuation-based analy-
sis, these exceptions follow automatically from the meaning of the expressions
involved. The net prediction is that it is precisely in reconstruction cases that
evaluation order comes apart from linear order.

In recognition of the importance of evaluation order to building a case that
continuations are indispensable, Part I of the book is devoted to an in-depth case
study of crossover and related phenomena, including in-situ wh and wh-fronting,
donkey anaphora, coordination, and the order-sensitivity of negative polarity li-
censing. The analysis is expressed in a continuation-based grammar presented
in what we call tower notation, as introduced in, e.g., Barker and Shan (2008).
This formalism is expressly designed to be as easy to learn as possible, and in
particular, easy to work with on paper and on a blackboard.

But a principled treatment of evaluation order is not the only distinctive ad-
vantage of taking a continuation-based view. Part II of the book investigates phe-
nomena that do not depend on evaluation order. The first of the two main case
studies involves scope-taking adjectives such as same and different.

(7) Ann and Bill read the same book.

The sentence-internal reading (the reading that does not depend on identifying
some salient book from context) is notoriously difficult to treat compositionally
(see, e.g., Carlson (1987), Keenan (1992)). Following the parasitic-scope ap-
proach of Barker (2007), we show how a continuation-based analysis follows
naturally from an analysis of nominal uses of same.

Because parasitic scope requires higher-order continuations (categories of the
form A)(B)C)), which are beyond the expressive power of the grammar from
Part I, we develop the analyses in Part II in a continuation-based type-logical
grammar first introduced in Barker (2007).

The second main case study in Part II is sluicing.

(8) [John made someone happy], but I don’t know who .
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The interpretation of the embedded interrogative who takes its meaning from
the content of an antecedent clause, in this case, the bracketed initial clause. Fur-
thermore, the wh-phrase who corresponds (in a sense made precise below) to the
indefinite someone. In fact, the elided content is exactly the antecedent clause with
the wh-correlate removed, namely, John made [ ] happy. But of course, this is ex-
actly a continuation, namely, the continuation of someone relative to the bracketed
antecedent clause. Following Barker (2013), we suggest that sluicing is anaphora
to a continuation. If so, then we need a grammar that explicitly recognizes con-
tinuations, so that it can make them available to serve as potential antecedents.

The answer to the question “What makes continuations essential?”, then, is
that continuations enable new and potentially insightful analyses of crossover, re-
construction, NPI licensing, and other order-sensitive phenomena in terms of eval-
uation order; and that continuations provide robust, potentially insightful analyses
of parasitic scope and sluicing.

A continuation is the rest of an expression, e.g., a scope remnant. In some
sense, then, continuations are anti-constituents: the complement of an expression
relative to some enclosing expression. Analyzing natural language without explic-
itly using continuations is like performing arithmetic without ever using negative
numbers: many useful tasks can still be accomplished, but a full understanding
requires taking a broader view.

Why are continuations so hard to understand?

Continuations have been studied in computer science, in logic, and in natural
language semantics. No matter which discipline, they have a reputation for being
hard to understand. Apparently, continuations are intrinsically hard to understand,
at least at first.

We will spend considerable effort explaining what continuations are, concen-
trating especially on showing in detail how analyses that make use of continua-
tions work on a practical level.

Furthermore, since no single presentation works best for everyone, we will
come at continuations from several different directions. The majority of the book
will be concerned with a grammar that we develop incrementally in Part I, with
step-by-step explanations and many derivations and diagrams. Then we’ll develop
a different continuation-based grammar in Part II. The hope is that comparing
these two different formalisms will clarify the essence of (one kind of) continua-
tion.

In our experience, grasping continuations requires working with them. There-
fore, we have provided a number of exercises throughout Part I, with complete
solutions at the end of the book. Offering exercises is unusual for a research
monograph in linguistics. We have included them with the encouragement of our
editors, as well as of many of our students and colleagues. We hope that they’re
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useful to some of our readers. If you aren’t interested in doing exercises, you can
think of them as a kind of footnote.

We can’t promise that we will make continuations easy to understand. We
can, however, promise three things. First, we promise we’ll do our best to make
understanding them as easy as possible. Second, we promise that, given a modest
amount of effort on the part of the reader, it will be possible to understand in
detail how a continuation-based analysis works. Finally, we promise that we’ll
do our best to make understanding continuations worth the effort, in terms of new
insights into natural language semantics.

Audience

The level of the discussion in the first half of the book is aimed at readers
who understand the standard tools and techniques of natural language semantics
at the level of a first-year graduate student or of an advanced undergraduate. As
usual, this amounts to some familiarity with phrase structure grammars, the first-
order Predicate Calculus, the (simply-typed) lambda calculus, and, ideally, the
basic ideas of generalized quantifiers in the spirit of Montague, as in, for example,
Heim and Kratzer (1998).

Familiarity with techniques from the theory of programming languages will
help, but is not necessary. van Eijck and Unger (2010) is a particularly congenial
presentation of computational techniques in the service of semantic analysis.

Once the core of the approach has been established in the first several chapters,
the theoretical and empirical investigations will begin to go deeper, and the level
of the discussion will approach the usual level of a research monograph in terms of
speed of presentation and assumptions about familiarity with standard literature.

Like any non-trivial formal technique, a complete understanding of continua-
tions requires working through problems. We strongly urge the reader to complete
a few key exercises on paper. The tower system has been designed specifically to
make this both practical and rewarding.

We’ll also do our best to help readers go beyond this operational-level un-
derstanding to a deeper appreciation, with comparisons with a number of other
approaches, and pointers into the literature.

Ways to read this book

The heart of the book is an attempt to use continuations to gain a deeper un-
derstanding of natural language. The core ideas are presented in this introductory
chapter, and in the two following chapters, chapters 1 and 2. These chapters de-
velop continuations and the tower system up to a simple account of scope, bind-
ing, and crossover. Chapter 3 fits these ideas into a larger theoretical landscape,
showing how taking a continuations-based perspective unifies Montague’s gener-
alized quantifier theory of DP meaning with the dynamic semantics perspective on
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sentence meaning, by treating them as two special cases of a more general inter-
pretive strategy. If your goal is to merely get an impression of what continuations
are and how they can be used to model natural language, these first four chapters
will provide that much.

The remainder of Part I extends and deepens the core ideas and techniques
both empirically and theoretically. The empirical extensions include reconstruc-
tion, order effects in negative polarity licensing, and donkey anaphora. The theo-
retical discussions include Partee and Rooth (1983)’s theory of Generalized Coor-
dination (section 7.1), Hendriks (1993)’s Flexible Montague Grammar approach
to scope-taking (section 7.2), Jacobson (1999)’s Variable Free Semantics (sec-
tions 11.1 and 11.2), Steedman (2012)’s theory of scope as surface constituency
(section 11.3), and Plotkin (1975)’s Continuation-Passing-Style approach to eval-
uation order in the lambda calculus (section 12.1).

Part II analyzes sentence-internal uses of same, verb phrase ellipsis, and sluic-
ing. Part II does not depend on Part I, and should be understandable even if it
is read independently of Part I. Theoretical comparisons include Morrill et al.
(2011)’s Discontinuous Lambek Grammar (section 15.2), de Groote (2001)’s ap-
plication of the l µ-calculus to scope (section 18.1), and Bernardi and Moortgat
(2010)’s Lambek-Grishin calculus (section 18.2).

Historical notes

The research reported in this book began roughly at the turn of the millennium.
In the case of Barker, this included a manuscript first circulated in 2000. An early
version was published as Barker (2001), and a revised version was published as
Barker (2002). In the case of Shan, many of the ideas developed in this book first
appeared in Shan (2001c) and Shan (2001d), some of which are developed further
in Shan (2005).

Continuations have been rediscovered many times in computer science, as
related by Reynolds (1993), and the same is true in the study of natural language:
we are by no means the first semanticists to make use of continuations. In fact, it
is the burden of chapter 3 to argue that Montague’s conception of DP meanings
as generalized quantifiers is a form of continuation passing. Likewise, as that
chapter also argues, we consider the dynamic conception of meaning (on which a
sentence is a context update function, as in, e.g., Groenendijk and Stokhof (1990))
as a different version of the same core idea of continuization. And yet again,
we will suggest that Partee (1987)’s treatment of generalized coordination (see
section 7.1), as well as Hendriks (1993)’s treatment of scope-taking (chapter 7.2)
also make implicit use of continuations.

Nor are we the only researchers to study natural language semantics with
explicit consideration of continuations. Around the same time we began our
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work, de Groote (2001) applied the l µ-calculus to natural language scope (sec-
tion 18.1). He presented this work at the 2001 Amsterdam Colloquium, the same
conference where Shan presented Shan (2001d). A few years later, de Groote
(2006) gave a different continuation-based treatment of donkey anaphora (dis-
cussed in section 18.3). Among the growing list of continuation-based analysis of
natural language, another one in particular that we will discuss below is Bernardi
and Moortgat (2010)’s Lambek-Grishin calculus (see section 18.2).

In other words, this book is neither the first word nor the last word on contin-
uations in natural language. Our goal here is to explain what continuations are,
how they work, and why they are potentially interesting to someone who studies
the structure of language and meaning.
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Scope and towers

This chapter gives a continuation-based grammar in the tower presentation,
with just enough machinery to handle scope-taking. This will require defining
a set of syntactic categories, and providing a way to combine expressions into
complex expressions. In addition, there will be two complementary type-shifters,
LIFT and LOWER. The next chapter adds binding, and the rest of Part I will build
on the basic fragment, extending it when necessary, to handle a wide range of
additional sentence types, concentrating on crossover and reconstruction.

The fragment is a combinatory categorial grammar similar in nature to the
systems in Jacobson (1999) or Steedman (2012), in which a small number of
type-shifters (“combinators”) apply freely and without constraint. It is a faithful
in spirit and in many details to the Shan and Barker (2006) analysis, though it uses
the ‘tower’ notation introduced in Barker and Shan (2008).

1.1. Scope

Scope-taking is one of the most fundamental, one of the most characteristic,
and one of the most dramatic features of the syntax and semantics of natural lan-
guages.

A phrase takes scope over a larger expression that contains it when the larger
expression serves as the smaller phrase’s semantic argument:

(9)

argument
function

(10) John said [Mary called [everyone] yesterday] with relief.

In this schematic picture, the context John said [ ] with relief corresponds to the
upper unshaded notched triangle, the embedded context Mary called [ ] yesterday

11
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This first of the two main parts of the book presents a particular continuation-

based grammar. The presentation and the grammar itself are designed to be as easy
to learn and use as possible. The system is a combinatory categorial grammar with
a small number of type-shifters, all of which apply freely and without constraint.
Categories and semantic values are presented in a grid format we call “tower no-
tation”. Using this system, we incrementally develop a fragment that addresses
quantifier scope, quantificational binding, dynamic anaphora, wh-fronting, rela-
tive clauses, and more.

The main explanatory goal is to provide a reconception of scope-taking. The
main advantage for adopting a continuation perspective is that continuations allow
fine-grained control over the order in which expressions are evaluated. If we as-
sume that the order of evaluation defaults to left to right, we have an explanation
for linear scope bias, as well as for crossover. At the same time, we show that var-
ious systematic exceptions to a simple left-to-right constraint on quantificational
binding, in particular, certain reconstruction effects, fall out from independently-
motivated assumptions about the meaning of the expressions involved.

Because the elements of the formal grammar are presented one by one, through-
out the text, here is a complete list of where to find the introduction of each piece:
the combination schema, (16); the four type-shifters, namely, LIFT (18), LOWER
(21), BIND (29), and FRONT (62); the principle of applying type-shifters to sub-
parts of categories, section 4.1; and the lexical schema for syntactic gaps, A( A,
section 5.1.

There is a compact description of a slightly refactored but equivalent grammar
in section 12.2. (The modifications are motivated to make the grammar more
computationally tractable.)

The first publication of an essentially equivalent formal grammar is Shan and
Barker (2006); the first publication of the tower presentation is Barker and Shan
(2008).
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corresponds to the middle grey notched triangle, and the scope-taker everyone
corresponds to the lower unshaded triangle.

In (10), everyone takes scope over the rest of the embedded clause that sur-
rounds it, namely, Mary called [ ] yesterday. Semantically, everyone denotes a
function that takes as its argument the property lx.yesterday(called x) m. We
will call the expression over which the scope-taker takes scope (the grey region in
the diagram) its nuclear scope.

The challenge for a theory of scope is to explain how it is possible for a scope-
taker to reverse the direction of function/argument composition, that is, how it is
possible to provide the scope-taking element with access to material that properly
surrounds it.

The diagram of scope-taking is essentially identical to the diagram above on
page 1 of the introductory chapter, the diagram that explained what a continuation
is. This similarity is not accidental: the material over which a scope-taker takes
scope is exactly what we are calling a continuation. This is what makes scope a
particularly natural and compelling application for continuations in natural lan-
guage.

Crucially, although all nuclear scopes can be viewed as continuations, the re-
verse is not true: the full range of continuations discussed in this book go beyond
any standard analysis of scope-taking.

1.2. Syntactic categories: adjacency vs. containment

We’ll need a set of syntactic category labels. This section develops a notation
based on the categorial grammar tradition that we will use throughout the rest of
the book.

Normally, functors combine with arguments that are syntactically adjacent to
them, either on the left or on the right. In the notation of categorial grammar
(e.g., Lambek (1958)), a functor in category A\B combines with an argument of
category A to its left to form a B. So if John has category DP, and slept has
category DP\S, John left has category S.

(11)

0

@
DP

John
j

DP\S
left
left

1

A=
S

John left
left(j)

Syntactically, we will call the operation that combines a functor with its argument
‘merge’. Semantically, merge corresponds to function application, as usual. This
means that the semantic type of an expression in category A\B will be a ! b ,
where a is the type of expressions in category A, and b is the result type of the
merged expression.
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Schematically, for ordinary function application we have:

(12)

B
A

f : B/A x : A

A
=

B
A

f (x) : B

The functor category (here, B/A) is represented as a clear triangle with one corner
missing: it would be a complete expression of category B if only we supply the
missing corner of category A. The category of the argument (here, A) must match
the category needed by the functor category, the category underneath the slash.
This picture shows combination with a right-leaning slash, i.e., B/A instead of A\
B, as we had above in (11). The result after combination is a complete expression
of category B.

For scope-taking, linear adjacency is not sufficient. After all, a scope-taker
is not adjacent to its argument, it is contained within its argument. In (10), for
instance, the scope-taker everyone is neither to the left or to the right of its nuclear
scope—in fact, it’s right in the middle. What we need, then, is a syntactic notion
of ‘surrounding’ and ‘being surrounded by’. Therefore we will augment the set
of category labels with a second kind of slash: A)B and B( A. On paper or on a
blackboard, we write these symbols as double slash marks. Syntactically, we will
see that these hollow slashes correspond to in-situ scope-taking.

Pursuing this idea, we will build up to a suitable category for a scope-taker
such as everyone in two steps. First, consider again the schematic picture of scope-
taking given above in (9), with some category labels added:

(13)
A

B
C

C( (A)B)
A)B

The category of the grey notched triangle in the middle—the nuclear scope—will
be A)B: something that would be a complete expression of category B, except
that it is missing an expression of category A somewhere (specific) inside of it.
Just like A\B, A)B will have semantic type a ! b : a function from objects of
type a to objects of type b , assuming that a and b are the semantic types of
expressions in categories A and B.
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As may already be clear by now, an expression in a category of the form A)B
will play the role of a continuation.

The second step in arriving at a category for a scope-taker is to consider the
scope-taker itself, the small lower triangle in the diagram. It takes the continu-
ation above it as its semantic argument. But once again, it is not adjacent to its
argument. Rather, it is surrounded by its argument. Just as we needed a notion
of ‘missing something somewhere inside of it’, we now need a notion of ‘missing
something surrounding it’. If A)B means ‘something that would be a B if we
could add an A somewhere (specific) inside of it’, then we’ll use C( D to mean
‘would be a C if we could add a D surrounding it’. Of course these two notions
complement each other; and in fact, a little thought will reveal that the surround-
ing D will most naturally be a continuation, since continuations are the kind of
expression that require something to be inserted inside of them.

The general form of a scope-taker, then, will be C( (A)B), as indicated in the
diagram: something that combines with a continuation of category A)B surround-
ing it to form a complex expression in category C.

For example, consider the sentence John called everyone yesterday. The nu-
clear scope is the sentence missing the scope-taker: John called [ ] yesterday.
This is an expression that would be an S except that it is missing a DP somewhere
specific inside of it. So this continuation has category DP)S. When the quanti-
fier everyone combines with this continuation, it will form a complete sentence of
category S. Therefore the syntactic category of the quantifier will be S( (DP)S):
the kind of expression that needs a continuation of category DP)S surrounding it
in order to form a complete S.

1.3. Tower notation

A simple example of scope-taking will serve to introduce the tower notation:

(14)

0

BBBB@

S S
DP

everyone
8y. [ ]

y

S S
DP\S

left
[ ]

left

1

CCCCA
=

S S
S

everyone left
8y. [ ]
left y

There are several elements in this derivation that will be carefully explained in the
course of the next few sections.

First, purely as a matter of notation, syntactic categories of the form C( (A)B)

can optionally be written as
C B

A
. This is what we call the ‘tower’ convention.

The categories in this chapter have only two levels, and so don’t really deserve to
be called towers; however, in later chapters, categories will grow to include three
or more layers.
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Towers can be read counterclockwise, starting at the bottom: expressions in

a category
C B

A
function locally (i.e., with respect to function/argument combi-

nation) as an A, take scope over an expression of category B, and return a new
expression of category C. So, as explained above, the syntactic category given

here for everyone will be S( (DP)S)⌘
S S
DP

: something that functions locally as

a DP, takes scope over an S, and returns as a result a new expression of category
S.

Semantically, everyone will denote the usual generalized quantifier, namely,
lk.8y.ky, where k is a variable of type e! t. But, as illustrated above in (14),
we can write semantic values in tower notation too:

(15)
S( (DP)S)

everyone
lk8y.ky

⌘

S S
DP

everyone
8y. [ ]

y

In general, a function of the form lk.g[k f ] can optionally be written as
g[ ]

f
.

Here, 8y.[ ] and g[ ] are contexts, i.e., logical expressions containing a sin-
gle hole. This notation is often seen in theoretical discussions of formal lan-
guages (for instance, Barendregt (1981):29), including programming languages
(e.g., Felleisen (1987)), as well as in discussions of logical languages (for instance,
in discussions of the cut rule in substructural logics, e.g., Moortgat (1997):106 or
Restall (2000):112); see also chapter 13.

Contexts are not so familiar in linguistic discussions. However, because syn-
tactic and semantic towers are completely equivalent with their flat (i.e., non-
tower) counterparts, it is always possible to give a full analysis that does not rely
on contexts that contain holes, if desired.

Exercise 1: What are the flat notational counterparts of the

syntactic and semantic towers
S S
DP\S

and
8x.[ ]
left x

?

1.4. The combination schema

Continuing the explanation of the derivation in (14), the combination of two
multi-level towers cannot be simple functional application. Rather, it is described
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by the following schema:

(16) The combination schema (‘/’ variant):
0

BBBB@

C D
B/A

left.exp
g[ ]

f

D E
A

right.exp
h[ ]
x

1

CCCCA
=

C E
B

left.exp right.exp
g[h[ ]]
f (x)

On the syntactic tier, the horizontal line divides two different combination regimes.
Beneath the horizontal line, B/A and A combine as usual to form a B; above the
line, C|D and D|E combine to form C|E.

In parallel, on the semantic tier, below the horizontal line, combination is
function application. Above the horizontal line, g[ ] and h[ ] combine to form
g[h[ ]]. For instance, if g[ ] = 8x.[ ], and h[ ] = 9y.[ ], then g[h[ ]] = 8x[9y.[ ]].

Exercise 2: If g[ ] = lx.(x [ ])y and g[h[saw m]] =
lx.(x(thinks(saw m)))y, what must h[ ] be?

It is important to distinguish plugging a hole in a context from beta reduction
in the lambda calculus. Unlike beta reduction, plugging a hole can result in vari-
able capture. If g[ ] = lx.(x [ ])y, then g[x] = lx.(xx)y: plugging the hole in g[ ]
with x results in an expression in which the plug x is bound by the lambda.

Because the tower notation and flat notation are completely equivalent, if there
is any uncertainty over the interaction of context holes with variable capture, in
any concrete example it is always possible to translate the tower in question back
into flat notation, and then make use of the usual rules of beta reduction.

The combination schema in (16) will be the general mode of composition that
will be used throughout Part I. As we will explain in detail below, it embodies
the general principle that expressions, by default, must be evaluated from left to
right, so it is at the heart of our explanation of crossover, reconstruction, and other
evaluation-order effects.

A tangram diagram will help unpack what is going on here conceptually.
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(17) D

C

B
A A

E

D

=

E

D

C

B
A

Focusing first on the layer below the horizontal lines, the unshaded trapezoidal
functor element has category B/A, and the small grey triangle has category A.
They combine according to the normal function/argument pattern: the A cate-
gories match and cancel, forming an expression of category B. This is just diagram
(12) repeated.

In the layer above the horizontal line, the syntactic categories D match (note
that the labels in the diagram match the categories in the schema given above in
(16) exactly), meaning that it is coherent to use the result of the notched gray con-
tinuation as the input to the unshaded continuation. This composition is indicated
graphically on the right by inserting the gray subcomputation (E to D) into the
notch of the unshaded computation (D to C). The result after combination is an
expression that is waiting for continuation that would fit in the space occupied by
the horizontal line, namely, a computation that can turn a B into an E (i.e., a con-
tinuation of category B)E). If such a continuation were supplied, the net result
would be a complete expression of category C.

Exercise 3: The combination schema in (16) has a right-
leaning slash in the syntactic category of its leftmost expres-
sion. What should the combination schema be when the two

elements have categories
C D

A
and

D E
A\B

? It may help to

draw the tangram diagram.

1.5. Types and continuations

The semantic types of the expressions in this grammar are straightforward.
Expressions in category DP have semantic type e, the type of individuals, and
expressions in category S have semantic type t, the type of truth values. As men-
tioned, expressions in category A\B have semantic type a ! b , where a is the
type of A and b is the type of B. Likewise, expressions in category A)B also have
semantic type a ! b , as do expressions in categories B/A and B( A.
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Thus since the syntactic category of everyone is
S S
DP

⌘ S( (DP)S), the se-

mantic type of everyone is (e ! t) ! t. This is exactly what we expect for an
extensional generalized quantifier.

And since the semantic value of everyone as given above in (14) is
8y.[ ]

y
⌘

lk.8y.ky, the typing correspondence forces x to be a variable of type e, and k
to be a variable of type e ! t. In other words, as discussed in more depth in
chapter (3), the continuation-based approach has led us more or less directly to
the standard treatment of generalized quantifiers of Montague (1974) and Barwise
and Cooper (1981).

Where in the semantics are the continuations? As suggested by the choice of
variable symbol, k stands for ‘continuation’. For instance, in the case of everyone,
the key fact is that the continuation of a DP relative to the clause it takes scope
over will be a function of type e! t, exactly the type we just assigned to k .

1.6. The LIFT type-shifter

Another element that needs comment in the derivation in (14) above is that the
syntax and semantics for left does not match the treatment it received in (11). The
reason is that non-scope-taking elements such as left must be adjusted in order
to combine with scope-takers. Just as Montague recognized that the denotations
of proper names (which according to Partee (1987) are fundamentally of type e)
must be adjusted in order to coordinate with properly quantificational DPs (type
(e ! t) ! t), so too must left be adjusted here. In both cases, the adjustment
mechanism is the same: a generalization of Partee (1987)’s LIFT type-shifter. In
general, for all categories A and B, and for all semantic values x:

(18)
A

phrase
x

LIFT
)

B B
A

phrase
[ ]

x

If x is the semantic value of an expression in category A, then the semantic value

of the LIFTed A is
[ ]

x
⌘ lk.kx.
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The tangram version shows how LIFT turns a value into an expression that is
expecting a continuation.

(19)

A
LIFT
)

B

B

A

Looking at the result, the horizontal line represents the place where the continua-
tion will fit. This expression expects a continuation that surrounds an expression
of category A to build an expression of category B. The idea of the LIFT oper-
ation is that it is easy for an expression of category A to use a continuation of
category A)B to produce a result of category B: simply apply the continuation
to the original expression of category A. In other words, the semantic content of
the unshaded notched triangle above the horizontal line on the right is simply an
identity function.

Two examples will serve to illustrate:

(20) (a)
DP

John
j

LIFT
)

S S
DP

John
[ ]

j

(b)
DP\S

left
left

LIFT
)

S S
DP\S

left
[ ]

left

For instance, LIFTing the proper name John yields the usual generalized quantifier

syntax and semantics, since
[ ]

j ⌘ lk.k(j). Likewise, when the simple version of

left given in (11) undergoes the LIFT typeshifter, the result is the verb phrase that
appears above in the derivation of everyone left in (14).

Semantically, just as the generalized-quantifier version of John has no de-
tectable scope-taking effect (it is ‘scopeless’), so too the LIFTed left has no de-
tectable scope-taking effect. This is evident from fact that the semantics of the
LIFT operator supplies just an empty context ‘[ ]’ above the horizontal line (equiv-
alent in flat notation to the identity function).

As chapter 3 will emphasize, continuizing throughout the grammar allows us
to generalize Partee’s LIFT type-shifter from something that originally only ap-
plied sensibly to expressions of type e to something that can apply to expressions
in any category.



In
Pres

s
20 1. SCOPE AND TOWERS

1.7. The LOWER type-shifter

The final element in the derivation of everyone left that requires explanation
is the fact that the derivation as given above ends with a multi-level syntactic

category. That is, the final syntactic category is
S S

S
instead of a plain S. A

derivation like this would be appropriate if the clause were embedded in a larger
expression over which the quantifier takes scope; but if we imagine that this is a
complete utterance, we need a way to close off the scope domain of the quantifier.
We accomplish this with the following type-shifter.

For all categories A, for all contexts f [ ], and for all semantic values x:

(21)

A S
S

phrase
f [ ]
x

LOWER
)

A
phrase

f [x]

If F is the semantic value of the original expression, then F(lk.k) is the value of
the shifted expression. The idea is that the semantic tower is collapsed by plugging
the hole in the context above the line with the material below the line:

(22)

A

S

S
LOWER

)

S

A

This diagram makes it clear how it is possible to remove the horizontal line and
collapse two levels into one, provided that the category of the plug (the lower gray
element) matches the category expected by the context (the element above the
line).

Crucially, the LOWER rule as given in (21) restricts the lowering operation to
situations in which the category of the plug is S. Thus this lowering rule only
applies to scope-taking elements that take scope over a clause. This limitation
plays an important role in the explanation for crossover, as discussed in section
4.3.

Using the LOWER type-shifter, we can complete the derivation of everyone
left:
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(23)

S S
S

everyone left
8y. [ ]
left y

LOWER
)

S
everyone left
8y. left y

The combinator lowers the category of the sentence back to a plain S.
Though lowering operations are not as common in the literature as lifting,

the LOWER type-shifter plays a role here that is closely similar to Groenendijk
and Stokhof’s 1989 ‘#’ operator. We will comment further on this connection in
section 3.3.

1.8. A linear scope bias

As we have mentioned, the explanation for crossover will depend heavily on
imposing a left-to-right evaluation regime. This bias is already embodied in the
combination schema given above in (16). As one symptom of the fact that the
combination schema enforces left-to-right evaluation order, note that when a sen-
tence contains two quantifiers, the quantifier on the left takes scope over the one
on the right, at least as a default:

(24)

S S
DP

someone
9x. [ ]

x

0

BBBB@

S S
(DP\S)/DP

loves
[ ]

loves

S S
DP

everyone
8y. [ ]

y

1

CCCCA

=

S S
S

someone loves everyone
9x. 8y. [ ]
loves y x

LOWER
)

S
someone loves everyone

9x. 8y. loves y x

This derivation involves two applications of the combination schema: once for the
verb (the LIFTed loves) combining with its direct object (everyone), and once for
the subject (someone) combining with the verb phrase.

Exercise 4: Give the intermediate result of combining loves
with everyone.
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As a result of the left-to-right bias built into the combination schema, this
evaluates to 9x8y.loves y x, in which the existential quantifier takes linear (i.e.,
surface) scope over the universal.

Of course, we will also need a way to arrive at inverse scope; that will be
postponed to chapter 4.

1.9. A scope ambiguity due to LOWER

In addition to its role as a derivation finisher, LOWER also serves as a way to
delimit the region that a scope-taker takes scope over. Like all of the type-shifters
in this book, LOWER is allowed to freely apply or not whenever its schema is
matched. Whether or not LOWER applies can determine which interpretation an
ambiguous sentence receives.
(25) Mary wants everyone to leave.

For instance, if LOWER applies to the embedded clause everyone to leave before
it combines with the matrix verb wants, then the scope of the quantifier will be
limited to the embedded clause, and the interpretation of the sentence will be
wants(8x.leave x)m. In this interpretation, Mary has a single desire: that every-
one leave.

But if LOWER does not apply until the end of the derivation, a different inter-
pretation emerges:

(26)

S S
DP

Mary
[ ]

m

0

BBBB@

S S
(DP\S)/S

wants
[ ]

wants

0

BBBB@

S S
DP

everyone
8x.[ ]

x

S S
DP\S

to leave
[ ]

leave

1

CCCCA

1

CCCCA

=

S S
S

M.w.e.t.l
8x.[ ]

wants(leave x)m

LOWER
)

S
Mary wants everyone to leave

8x.wants(leave x)m

In this interpretation, Mary has a multiplicity of desires: for each person x, Mary
wants x to leave.

This ability of LOWER to encapsulate scope within a circumscribed domain is
closely analogous to what Danvy and Filinski (1990) call a ‘reset’ in their theory
of layered continuations. It is also similar to the mechanism for limiting scope
in Barker (2002). See Charlow (2014) for discussion of reset as a mechanism for
enforcing a general theory of scope islands in the context of a continuation-based
grammar.
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We now have a grammar that allows scope-taking elements to take scope over
a portion of the material that surrounds them. At this point, we can handle sen-
tences with multiple quantifiers, though we are for the moment limited to linear
scope. We can also explain some scope ambiguities, if the scope-taking element
interacts with some other element in the sentence (here, the verb wants).
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CHAPTER 2

Binding and crossover

When a quantifier follows a pronoun it is trying to bind, the usual result is a
mild kind of ungrammaticality known as a crossover violation.
(27) a. Everyonei loves hisi mother.

b. *Hisi mother loves everyonei.
As discussed in the introduction, a quantifier can bind a pronoun that follows it, as
in (27a), but usually not when the pronoun precedes it, as in (27b). In this chapter,
we will extend the grammar to account for this basic contrast, and then build a
progressively more refined account of the phenomenon in later chapters.

In order to discuss crossover, we will first need to provide a way for quantifiers
to bind pronouns. This will involve adding a new connective to the syntactic
categories: AB B will be a syntactic category whenever A and B are syntactic
categories. Its semantic type will be a ! b , where a and b are the types of A
and B. This will be the category of something that is basically an expression in
category B, but that contains a pronoun of category A needing to be bound.

Just as in Jacobson (1999), the presence of an unbound pronoun will be recorded
on the category of each larger expression that contains it. In particular, a clause
containing an unbound pronoun will have category DPBS rather than plain S. In
order to accomplish this, the essential assumption here is that a pronoun must take
scope, as advocated by, e.g., Dowty (2007): it will function locally as a DP, take
scope over an S, and turn that S into an open proposition:

(28)

0

BBBB@

DPBS S
DP
he

ly. [ ]
y

S S
DP\S

left
[ ]

left

1

CCCCA
=

DPBS S
S

he left
ly. [ ]
left y

LOWER
)

DPBS
he left

ly. left y

Note that the lexical denotation of the pronoun,
ly. [ ]

y
⌘ lky.ky, is a (two-place)

identity function.
On this view, sentences with free pronouns do not have the same category

as sentences without pronouns (e.g., John left). This difference reflects the fact
that a sentence containing a pronoun means something different from an ordinary
sentence: it does not express a complete thought until the value of the pronoun

25
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has been specified, whether by binding or by the pragmatic context. However, the
two sentence types still share a common core; this commonality is captured here
by the fact that in the tower notation, below the line, they are both S’s, and it is
only above the line that their differences are marked.

Once a pronominal dependency has been created, how will it be satisfied? Cer-
tainly, it must be possible for the value of the embedded pronoun to be supplied by
the pragmatic context. But it must also be possible for some other element within
the utterance to control (i.e., to bind) the value of the pronoun. We accomplish this
by providing a type shifter called BIND, which enables an arbitrary DP to bind a
downstream pronoun. For any categories A and B:

(29)

A B
DP

phrase
f [ ]
x

BIND
)

A DPBB
DP

phrase
f [[ ] x]

x

Intuitively, this type-shifter feeds a copy of x to the function that will be used to
plug the hole in f [ ]. For example:

(30)
S S
DP

everyone
8x. [ ]

x

BIND
)

S DPBS
DP

everyone
8x.[ ]x

x

The shifted expression has category S( (DP)(DPBS)) and semantics lk8x.k x x:
something that knows how to turn a surrounding sentence containing a pronoun
(DPBS) into a plain clause (S). It accomplishes this semantically by quantifying
over individuals (8x), and then applying the continuation k to two copies of each
individual x (kxx), rather than to just one.

We immediately have an account of quantificational binding:
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(31)

S DPBS
DP

everyone
8x.[ ]x

x

0

BBBB@

DPBS DPBS
(DP\S)/DP

loves
[ ]

loves

0

BBBB@

DPBS S
DP
his

ly. [ ]
y

S S
DP\DP
mother

[ ]

mom

1

CCCCA

1

CCCCA

=

S S
S

Everyone loves his mother
8x.(ly. [ ])x

loves (mom y) x

LOWER
)

S
Everyone loves his mother
8x.(ly.loves (mom y) x)x

Note that the syntactic tower for loves gets its upper layer by choosing B = DPBS
when applying LIFT. After beta reduction (i.e., lambda conversion), the semantic
value is 8x. loves (mom x) x. This is an interpretation on which the quantifier
binds the pronoun, as desired.

Exercise 5: Compute the functions denoted by his mother
and by loves his mother.

2.1. The irrelevance of c-command

Since c-command has no special status in our theory of binding, it is perfectly
possible to have binding without c-command.

(32)

0

BBBB@

S DPBS
DP

everyone’s
8x.[ ]x

x

DPBS DPBS
DP\DP
mother

[ ]

mother

1

CCCCA

0

BBBB@

DPBS DPBS
(DP\S)/DP

loves
[ ]

loves

DPBS S
DP
him

ly.[ ]
y

1

CCCCA

The final interpretation is equivalent to 8y. loves y (mom y). The quantifier is able
to bind the pronoun even though the quantifier is embedded in possessor position
inside the subject, and so therefore does not c-command the pronoun.

One way to see what is going on here is to consider the upper level of the
syntactic towers in (32): there is a chain of matching DPBS’s connecting the pos-
sessor with the pronoun, and this chain is not disrupted by the major constituent
boundary between the subject and the verb phrase. Put another way, it is often
possible to ignore syntactic constituency when computing the upper levels of a
tower.

Allowing a quantifier to bind a pronoun without c-commanding it is unortho-
dox. Since Reinhart (1983), it is almost universally assumed that quantificational
binding requires c-command. Indeed, in textbooks such as Heim and Kratzer
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(1998):261 and Büring (2005):91, the very definition of binding requires the binder
to c-command to bindee. Notable dissenters include Bresnan (1994, 1998), Safir
(2004a,b), and Jäger (2005). Building on Shan and Barker (2006), Barker (2012)
makes a case in some detail that there is abundant empirical motivation for reject-
ing this requirement.

Here is a representative sample of the data discussed in Barker (2012):
(33) a. [Everyonei’s mother] thinks hei’s a genius.

b. [Someone from everyi city] hates iti.
c. John gave [to eachi participant] a framed picture of heri mother.
d. We [will sell noi wine] before itis time.
e. [After unthreading eachi screw], but before removing iti...
f. The grade [that eachi student receives] is recorded in hisi file.

This data shows that quantifiers can bind pronouns even when the quantifier is
embedded in a possessive DP, in a nominal complement, in a prepositional phrase,
in a verb phrase, in a temporal adjunct, even when embedded inside of a relative
clause. In each example, the quantifier does not c-command the pronoun. Various
modifications and extensions of c-command have been proposed to handle some
of the data, but Barker (2012) argues that none of these redefinitions covers all of
the data.

Furthermore, as the derivation in (32) demonstrates, it is perfectly feasible to
build a grammar in which a quantifier binds a pronoun without c-commanding
it. Nothing special needs to be said; indeed, we would need to take special pains
to impose a c-command requirement. In view of the data and the discussion in
Barker (2012), then, we will assume that there is no c-command requirement on
quantificational binding.

There is, of course, one important class of examples where a c-command re-
striction on quantificational binding makes good predictions, namely, crossover
configurations. Any analysis that tries to do without a c-command restriction must
supply an explanation for crossover that does not depend on c-command. This is
exactly what we will do, in considerable detail, starting with the next sections, and
continuing in later chapters.

2.2. The standard approach to crossover

The name “crossover” comes from Postal’s (1971:62) proposal for a general
constraint on movement, roughly: an DP may not move across a coindexed pro-
noun. This prohibition is usually implemented by taking advantage of multiple
stages for the derivation of a sentence. Reinhart’s (1983) is an influential example,
and Büring (2001, 2004) provides a more recent analysis that uses the same basic
strategy. The idea is to postulate two distinct levels of representation: first, a level
of surface structure at which binding is established by some syntactic relationship
based on c-command, then a level of Logical Form at which quantifiers take their
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semantic scope. This way, even though a quantifier may raise at LF to take scope
over a pronoun, it can nevertheless only bind the pronoun if it c-commands the
pronoun from its surface position.

Of course, this strategy is only available if binding depends on c-command.
Because we reject c-command as a requirement for quantificational binding for
the reasons given in the previous section, we cannot adopt the traditional strategy.

What, then, determines crossover? A simple leftness condition (linear prece-
dence) would cover some of the data, but, as mentioned in the introduction, there
are systematic counterexamples involving reconstruction, repeated here from (6):

(34) a. Which of hisi relatives does every mani love the most?
b. The relative of hisi that every mani loves most is his mother.

On the standard approach, reconstruction examples require syntactically moving
some material, including the pronoun, back into the gap position before checking
compliance with the syntactic c-command requirement, so that crossover viola-
tions can only be assessed at a strictly intermediate stage of the derivation.

The explanation developed here is that quantificational binding depends not
on c-command or on simple leftness, but rather, on evaluation order.

2.3. A first crossover example

Because continuations are well-suited for reasoning about evaluation order
(see the discussion in section 12.1), they enable us to explain crossover as an
effect of the order in which the various elements of the sentence are processed
(evaluated).

Here is what happens in a classic weak crossover configuration, i.e., when we
try to allow a quantifier to bind a pronoun when the quantifier follows the pronoun.

(35)

0

@
DPBS S

DP
his

S S
DP\DP
mother

1

A

0

@
S S

(DP\S)/DP
loves

S DPBS
DP

everyone

1

A

=
DPBS DPBS

S
his mother loves everyone

Combination proceeds smoothly, and the complete string is recognized as a syn-
tactic (and semantic) constituent. However, the result is not a complete derivation
of a clause. In particular, it can’t be lowered, since the category of the expression
does not match the input to the LOWER type-shifter. The reason is that LOWER
requires the subcategories in the upper right corner of the tower (here, DPBS) and
beneath the horizontal line (S) to match. Even more restrictively, it requires these
subcategories to be S. (See section 4.3 for a discussion of the explanatory status of
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these syntactic restrictions.) This means that in the derivation in (35), the pronoun
continues to need a binder, and the quantifier continues to need something to bind.

Exercise 6: Compute the semantic value of the expression
derived in (35).

Thus even though the quantifier takes scope over the entire clause, it is unable
to bind a pronoun that precedes it.

We will discuss additional examples of crossover, as well as apparent excep-
tions to crossover, including reconstruction, in the chapters to follow.

2.4. Strong crossover

The derivation just shown concerns weak crossover, in which the pronoun to
be bound does not c-command the quantifier in question. Situations in which the
pronoun does c-command the quantifier are know as strong crossover. There is a
qualitative difference between strong crossover and weak crossover.
(36) a. *Hei loves everyonei.

b. ?Hisi mother loves everyonei.
The standard judgment is that weak crossover examples can be interpreted with
some effort, but that strong crossover examples are irredeemable. (We will spec-
ulate about what might be going on when a comprehender makes the effort to
interpret a weak crossover example in the next section.)

Although the account here rules out weak crossover and strong crossover alike,
nothing in the formal system as presented distinguishes strong crossover from
weak crossover. Presumably, strong crossover is due to some factor over and
above whatever characterizes weak crossover, perhaps something along the lines
of Safir (2004b)’s (chapter 3) Independence Principle. The Independence Princi-
ple entails that a pronoun must not c-command anything that binds it.

2.5. Reversing the order of evaluation

In order to explore the role that order of evaluation plays in the crossover
explanation, we can temporarily replace the combination schema given above in
(16) with a variant that imposes a right-to-left processing bias.

(37)

0

BBBB@

D E
A/B
left
g[ ]

f

C D
B

right
h[ ]
x

1

CCCCA
=

C E
A

left right
h[g[ ]]
f (x)

Here, it is the outer corner categories of the syntactic towers that must match (the
D’s). On the semantic tier, now it is the rightmost context (h[ ]) that takes scope
over the leftmost context (g[ ]).
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Exercise 7: Draw the tangram diagram similar to (17) for
the right-to-left variant of the combination schema as given
in (37).

We can illustrate how this variant combination schema delivers reversed eval-
uation order bias by showing a derivation of Someone loves everyone:

(38)

S S
DP

someone
9x. [ ]

x

0

BBBB@

S S
(DP\S)/DP

loves
[ ]

loves

S S
DP

everyone
8y. [ ]

y

1

CCCCA

=

S S
S

Someone loves everyone
8y 9x. [ ]
loves y x

LOWER
)

S
Someone loves everyone

8y. 9x. loves y x

Using the variant combination schema in (37), the key thing to note is that the uni-
versal quantifier now takes scope over the existential, that is, the variant delivers
inverse scope by default.

Crucially here, the right-to-left combination schema also enables a quantifier
to bind a pronoun that precedes it:

(39)

DPBS S
DP
he

lx. [ ]
x

0

BBBB@

DPBS DPBS
(DP\S)/DP

loves
[ ]

loves

S DPBS
DP

everyone
8y. ([ ] y)

y

1

CCCCA

=

S S
S

He loves everyone
8y (lx. ([ ] y))

loves y x

LOWER
)

S
He loves everyone
8y. (lx. loves y x) y

The way in which the alternative combination schema incorrectly allows the deriva-
tion of this ungrammatical crossover interpretation is by requiring the outer cor-
ners of the syntactic towers to match, not the inner corners, as we have been as-
suming so far. Because of this, the BIND type-shifter and the LOWER type-shifter
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do not need to be adjusted in order for this crossover derivation to go through.
After lambda reduction, the final result is 8y.loves y y.

Incidentally, if there is an independent prohibition against a pronoun c-commanding
a binder, this strong crossover example will be correctly ruled out, but the right-to-
left schema would still incorrectly derives weak crossover examples such as ?Hisi
mother loves everyonei.

Exercise 8: Show that with only the right-to-left version
of combination available, it is no longer possible to derive
Everyonei loves hisi mother.

2.6. Default evaluation order is left-to-right

Following Shan and Barker (2006), in view of the bias for linear (surface)
quantifier scope, as well as the ungrammaticality of crossover interpretations, we
will adopt the following hypothesis:
(40) By default, natural language expressions are processed from left to right.

Here, “left to right” means the temporal order in which expressions are produced
and perceived. We will implement this hypothesis by assuming that the only com-
bination schema available for normal processing is the left-to-right schema given
above in (16).

Now, precisely because weak crossover is weak, it is possible to overcome the
default bias and find an interpretation for a crossover example. Shan and Barker
(2006) suggests that one possible explanation for this might be that if pressed by
pragmatic context, a comprehender can exceptionally resort to a right-to-left eval-
uation schema. (Strong crossover would continue to fully ungrammatical by virtue
of violating some separate requirement such as Safir’s Independence Principle.)

There are other possible explanations. For instance, we will consider a sec-
ond possible explanation involving a variant of the LOWER type-shifter below in
section 4.3.

In any case, we have seen that replacing the combination schema with a variant
creates multiple effects related to a global reversal of the default order of evalua-
tion, including default inverse scope and crossover amelioration. At the very least,
this shows how continuations provide a principled way to reason about order.

We will continue to develop our account of crossover and its exceptions step
by step throughout Part I, giving special attention to cases in which evaluation
order is correctly predicted to diverge from linear order. For example, in recon-
struction examples such as the relative of hisi that everyonei loves the most, a
pronoun linearly precedes the quantifier that binds it.

But the key ingredients of our explanation are already in place: we have a
continuation-based system that allows scope-taking expressions such as everyone
to take scope over a portion of a larger expression; a mechanism for DP’s to bind
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pronouns; and a default left-to-right bias in composition that, in simple examples,
prevents a quantifier from binding a pronoun that precedes it.
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CHAPTER 3

From generalized quantifiers to dynamic meaning

The last two chapters presented a basic continuation-based grammar that handled
a limited form of scope-taking and binding, including some simple examples of
crossover. The empirical robustness of the approach will be addressed in later
chapters, but in the meantime this chapter pauses to comment on what is going on
conceptually.

More specifically, we’ll show how taking a continuation-based perspective
enables us to unify two fundamental breakthroughs in semantics that might other-
wise seem independent: Montague’s conception of DPs as generalized quantifiers
on the one hand, and the central idea of dynamic semantics on the other hand,
namely, the conception of sentences as update functions on their contexts. Here’s
how: we’ve already seen that generalized quantifiers are functions on DP contin-
uations. We shall see that dynamic sentence meanings are functions on S contin-
uations. Because a continuation-based grammar provides access to continuations
systematically to every expression type, explicit use of continuations allows us
to recognize these two major insights as special cases of a single more general
strategy.

3.1. Capturing the duality of DP meaning

The puzzle is a familiar one. Proper names such as John, Mary, and Bill
behave syntactically (almost) exactly like quantificational expressions such as ev-
eryone, someone and no one: they can all serve as subjects, direct objects, indirect
objects, they can all passivize, participate in raising constructions, and so on. Yet
their internal semantics is radically different: names (on some accounts) refer to
entities, but the quantificational expressions do not refer at all; rather, they quan-
tify over some class of entities. This contrast gives rise the following question:

(41) Duality of DP meaning: What (if anything) unifies the meanings of
quantificational versus non-quantificational DPs?

The answer here will be that DP uniformly have access to their continuations (just
like any expression type). The difference between a name and a quantificational
DP is that the quantificational DP makes non-trivial use of its continuation.

35
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Once we have an answer to the duality question, we can go on to ask the
following questions:

(42) Scope displacement: Why does the semantic scope of a quantificational
DP sometimes differ from its syntactic scope?

The answer that we will give here depends on the fact that continuations deliver
surrounding semantic context up to some larger enclosing constituent (typically,
a clause). As a result, supposing that quantifiers denote functions on their own
continuation entails that they can take scope over a larger expression.

What do other theories have to say about these two questions?
We take Quantifier Raising (QR) at a level of Logical Form (LF) to be the

dominant view of natural language quantification among linguists and perhaps
among philosophers, or at the very least, the most universally familiar one. The
QR story is enormously persuasive and robust, both from a descriptive and from
an explanatory point of view. For the sake of concreteness, we will use Heim and
Kratzer (1998) (see especially their chapters 6 and 7) as our reference version for
the standard QR view.

On Heim and Kratzer’s standard version of the story, non-quantificational DPs
denote entities (type e). Quantificational DPs (henceforth, ‘QPs’) denote general-
ized quantifiers (type (e! t)! t), and typical transitive verbs denote relations
over entities (type e ! e ! t). Heim and Kratzer assume that composition is
driven by types: the direction of function/argument combination is determined by
whichever of the constituents has a type that is a function on objects correspond-
ing to the type of the other constituent. Thus when a QP occurs in subject position,
type-driven composition allows (indeed, requires) it to take the verb phrase (type
e ! t) as an argument. However, when a QP occurs in a non-subject position,
including direct object position, a type mismatch occurs: neither the verb nor the
quantificational object denotes a function of the right type to take the other as an
argument. Since interpretation would otherwise be impossible, QR moves the of-
fending QP to adjoin higher in the tree, leaving behind a bound trace of type e in
the original DP position, and triggering a special interpretation rule called Predi-
cate Abstraction. These adjustments repair the type mismatch, and simultaneously
explain scope displacement.

Under the QR account, the best we can say in answer to the duality question
is that a generalized quantifier is what a subject DP would have to denote in order
to take a verb phrase as an argument. But why are subjects special? And why
repair type-mismatches via QR, rather than, say, prohibiting QPs in non-subject
positions? There may be reasonable answers to these questions, perhaps along the
lines of claiming that since QR resembles overt syntactic movement, we can use
it ‘for free’. Our point is that the fact that these questions require answers shows
that duality and scope displacement are distinct phenomena according to the QR
view.
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Choosing the other horn of the dilemma, Montague (1974) gives a compelling
answer to the duality question: non-quantificational DPs and QPs all denote gen-
eralized quantifiers. That is why they have closely similar syntactic distribution.
Indeed, in the PTQ fragment, predicates accept generalized quantifiers in any NP
position without any type mismatch.

But nothing in the type system forces QPs to take wide scope. As a result,
Montague needs to stipulate a separate operation of Quantifying In to account
for scope displacement. Once again we fail to provide a unified answer to both
questions.

Therefore consider the following proposal:

(43) The continuation hypothesis (repeated from (1)): some natural lan-
guage expressions denote functions on continuations, i.e., on their own
semantic context.

In particular, assume that QPs denote functions on their continuations.
With respect to DP duality, QPs are just the continuation-aware version of

non-quantificational DPs. Once the entire grammar is continuized, there is no
type clash when they occur in object position, or in any other DP argument po-
sitions, since we can freely LIFT non-quantificational DPs so that they function
as generalized quantifiers. To the extent that the availability of LIFT is stipulated,
duality may be less than inevitable here; though see the type-logical treatment in
Part II, on which LIFT is a theorem, and does not need to be stipulated.

As for scope displacement, because of the nature of continuations, merely stat-
ing the truth conditions of a QP in terms of continuations automatically guarantees
that it will have semantic scope over an entire clause—in other words, scope dis-
placement follows directly from the semantic nature of quantification. In sum,
both the duality of DP meaning and scope displacement follow from the single
assumption that determiner phrase meanings have access to their continuations.

3.2. Deriving context update functions

If we continuize uniformly throughout the grammar, then we will continuize
both the category DP and the category S in one move. But saying that a clause
denotes a function on its continuation amounts to deducing one of the core ideas
of dynamic semantics.

We can show what we have in mind by giving an analysis of a simple dis-
course. If we make the usual assumption that a sequence of declarative sentences
can be interpreted via (ordinary, non-dynamic) conjunction (category (S\S)/S),
we immediately have an analysis of the mini-discourse Someonei entered. Hei
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left:

(44)

0

BBBB@

S DPBS
DP

someone
9y. ([ ] y)

y

DPBS DPBS
DP\S

entered
[ ]

entered

1

CCCCA

0

BBBB@

DPBS DPBS
(S\S)/S
[period]

[ ]

&

0

BBBB@

DPBS S
DP
he

lx.[ ]
x

S S
DP\S

left
[ ]

left

1

CCCCA

1

CCCCA

=

S S
S

Someone entered. He left
9y.lx.[ ] y

&(entered y)(left x)

LOWER, beta
)

S
Someone entered. He left
9y.&(entered y)(left y)

In this analysis, the scope of the indefinite determiner extends over the subsequent
clause. On the treatment here, this is just the indefinite taking wide scope over
more than one clause; see chapter 9 for a more thorough discussion.

The same mechanism that explains crossover above is operative here as well,
and predicts that no matter what the scope of the indefinite, it will only be able
to bind pronouns that are evaluated after it. Thus a discourse containing the same
sentences in reverse order (He left. Someone entered.) is correctly predicted not
to have an interpretation on which the pronoun covaries with the indefinite.

Note that, unlike some dynamic treatments such as Heim (1983), there is no
need here to stipulate any order-sensitive details in the lexical entry of the sequenc-
ing operator that conjoins sentences in a discourse. Schlenker (2007), among oth-
ers, criticizes the dynamic approach for such stipulations. Rather, here, the order
asymmetry is part of the general compositional schema, independent of the lexical
details of conjunction or any other operator. In fact, the conjunction plays no ac-
tive role in the anaphoric link established in the derivation above, beyond merely
allowing the syntactic part of the link to pass through unimpeded. This is achieved
by having the basic lexical entry for conjunction (here, (S\S)/S) undergo the LIFT
schema with A = DPBS. (See section 7.1 for a more general treatment of coordi-
nation that accommodates coordination of a wider range of syntactic categories.)

The ability of the continuation grammar to account for dynamic binding and
order asymmetries in a principled and general way depends on analyzing clause
meaning as continuation-aware, that is, as a function on sentence updates. Ana-

lyzing sentences as category
S S

S
instead of just category S allows binding infor-

mation to travel along the upper layer of the diagrams. Because the combination
schema introduced in chapter 1 is inherently left-to-right, it provides a unified
explanation for order sensitivity in crossover and in anaphora.
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3.3. Comparison with Dynamic Montague Grammar

The dynamic approach to natural language meaning includes Kamp (1981),
Heim (1982), Groenendijk and Stokhof (1991), Groenendijk and Stokhof (1990),
and many more; see Dekker (2012) for a recent perspective. We concentrate
here on Groenendijk and Stokhof’s (1989) Dynamic Montague Grammar (DMG),
since it is a paradigm example of a dynamic treatment that has some striking
similarities to our approach, yet with significant technical, empirical, and philo-
sophical differences.

DMG introduces a type-shifter ‘"’ to turn a static clause meaning q into its
dynamic counterpart " q.
(45) " q = l p. q^_p

In this definition, the down operator _ (a symbol borrowed from intensional logic,
but given a different meaning than usual) deals in assignments (‘states’) rather
than worlds.

The connective ‘;’ conjoins two dynamic sentence meanings.
(46) f ; y = l p. f(^y(p))

For example, John walks and John talks translates as
(47) (" walk(j)) ; (" talk(j)) = l p.walk(j)^ talk(j)^_p.

An additional type-shifter ‘#’ extracts a static truth condition from a dynamic
sentence meaning.
(48) # f = f(^true)
For example, applying # to (47) yields the truth condition
(49) walk(j)^ talk(j)^_^true = walk(j)^ talk(j).
These elements of DMG manage the composition of a proposition p in (45), (46),
and (48) much as the elements of our system manage continuations: roughly,
DMG’s ‘"’ corresponds to (a special case of) our LIFT; DMG’s ‘;’ corresponds
to (a special case of) our combination schema (16) and (likewise) stipulates left-
to-right evaluation; and DMG’s ‘#’ corresponds to our LOWER. Indeed, when
Groenendijk and Stokhof (1989) write that “we can look upon the propositions
which form the extension of a sentence as something giving the truth conditional
contents of its possible continuations”, they use the word ‘continuation’ in an
informal sense that coincides closely with what it means for us in the context of a
discussion of clause meaning.

Is DMG a continuation semantics, then? Perhaps, but if so, an incomplete
one. DMG only lifts clause meanings: from walks(j) to " walks(j). Analogously,
for quantification, Montague’s PTQ only lifts noun-phrase meanings: from the
individual j to the continuation-consumer lk. kj. In contrast to DMG and PTQ,
our grammar allows lifting any constituent, not just sentences or noun phrases.
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This uniformity allows our analysis to treat the mechanism by which quantifiers
find their scopes as one and the same as the mechanism by which pronouns find
their antecedents.

3.4. Unification of generalized quantifier with dynamic semantics

So Montague continuizes only the category DP. Dynamic semantics con-
tinuizes only the category S. The continuation strategy advocated here continuizes
uniformly throughout the grammar, including DP and S as special cases of a sys-
tematic pattern. As a result, continuations unify the generalized quantifier con-
ception of DP meaning and the dynamic view of sentences as context update
functions. They both are instances of the same shift in perspective, on which
expressions can not only denote values, but also functions on their own semantic
context.
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Multi-level towers: inverse scope

In this chapter, we generalize our system from one level of continuations to
multiple levels. This generalization lets us account for inverse scope and for mul-
tiple pronouns while maintaining the empirical advantages of left-to-right evalua-
tion order—in particular, the explanation for crossover.

The analyses in previous chapters have all involved towers with at most two

levels. For instance, the category of a quantificational DP is
S S
DP

. The bottom

level (beneath the horizontal line) tracks function/argument combination, and the
upper level provides a mechanism for long-distance semantic effects, such as tak-
ing scope or binding a pronoun. But with just one long-distance channel, there is
little room for combining multiple effects, say, allowing two arbitrary pronouns to
be bound by different quantifiers.

More subtly, with just two-level towers, there is no adequate way to represent
the full pattern of quantifier scope ambiguity. The problem is not that we can’t
accommodate more than one quantifier in the same sentence; we’ve already seen
a multi-quantifier derivation of Someone loves everyone above in (24). Rather, the
problem is that this sentence is generally believed to be ambiguous, depending on
the relative scope of the quantifiers. On the two-level tower system, however, the
only available scoping is the default left-to-right scoping imposed by the combi-
nation schema.

Our solution to both of these issues is to allow towers with more than two lay-
ers. This will involve generalizing the combination schema and the type shifters
LIFT, BIND and LOWER. Once we have multi-level towers, keeping binding in-
formation separate is a simple matter of making use of different levels. Likewise,
taking inverse scope is a matter of exploiting higher tower levels. From the point
of view of accounting for crossover, the danger will be that allowing inverse scope
might allow crossover. As it turns out, this is not a problem: the natural way of
generalizing to multiple levels automatically gives the desired result.

4.1. Accounting for scope ambiguity

In fact, the current version of LIFT already generates towers of arbitrary height.
Here is the LIFT type-shifter, repeated without modification from (18) above.

41
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(50)
A

phrase
x

LIFT
)

B B
A

phrase
[ ]

x

Since the input category schema A can range over arbitrary categories, this type-
shifter can apply to a tower that already has two levels:

(51)

S S
DP

everyone
8y.[ ]

y

LIFT
)

B B
S S
DP

everyone
[ ]

8y.[ ]
y

Here, the type-shifter applies by instantiating A as the entire input tower, i.e.,

A =
S S
DP

.

We can likewise lift all the other elements in a sentence, as long as we gener-
alize the combination schema in the obvious way.

(52)

E F
C D

A
left
h[ ]
g[ ]
x

F H
D G
A\B
right

j[ ]
i[ ]
f

=

E H
C G

B
left right

h[ j[ ]]
g[i[ ]]
f (x)

On the syntactic tier, inner categories must match on each upper level (D with D,
and F with F). On the semantic tier, contexts on the left (g[ ] and h[ ]) take scope
over contexts on the right (i[ ] and j[ ]).

Exercise 9: Which of the following two ways
of thinking about syntactic towers is coherent?

E F
C D

A
⌘

 
E F
C D

!

A
?

E F✓
C D

A

◆
?

Hint: figure out how to write the syntactic category in
question in flat (non-tower) notation.
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Exercise 10: Work out the flat notational equivalent for the

semantic value
h[ ]
g[ ]
x

. Hint: the constituent structure of a

semantic value mirrors exactly the constituent structure of
the corresponding syntactic category (see previous exercise).

But the LOWER type-shifter is not able to apply to multi-story towers. Here is
the LOWER type-shifter again:

(53)

A S
S

phrase
f [ ]
x

LOWER
)

A
phrase

f [x]

The reason is that the schema requires the category at the bottom of the tower to
be S, which is a literal atomic category symbol, and not a variable over categories.
Similar remarks apply to BIND, which has the literal category DP at the bottom.

The obvious move is to allow type-shifters to apply to subtowers. More pre-
cisely, we want to guarantee that for all type-shifters t , if t(x : A) = x0 : A0, then

t
✓

g[ ]
x

:
C B

A

◆
=

g[ ]
x0

:
C B

A0 . That is, we must allow type-shifters to apply to

the lower levels of a tower without disturbing the upper levels. (Incidentally, the
implementation notes in section 12.2 show how to refactor the type-shifters in a
way that builds in this sub-tower application principle.)

This gives us a different way to apply LIFT to everyone:

(54)

S S
DP

everyone
8x.[ ]

x

LIFT
)

S S
B B
DP

everyone
8x.[ ]
[ ]

x

The difference is that instead of applying LIFT by matching the category variable

A with the entire input tower (A =
S S
DP

), as we did before, we match it with just

the lowest level (A = DP).
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Exercise 11: Give a lambda term that will take the semantic
value of the tower on the left of (54) and return the semantic
value of the tower on the right.

Note that when LIFT adds a new layer on top to the lexical entry for everyone,
the quantification takes place on the middle level of the three-layer result, as the
semantic value of (51) shows. When LIFT adds a new layer in the middle of the
lexical entry, the quantification takes place on the highest level (compare (51) with
(54)). This is exactly the variability we need to account for scope ambiguity.

After all, if you decide to add a new floor to a physical tower, there are two
ways to go about it: either you add a new floor on the top of the old building (the
original LIFT strategy), or you jack up an existing floor and build the new floor in
the space in between. This second process is sometimes called ‘roof lifting’.

In any case, with this alternative way to LIFT in hand, we can derive the inverse
scope reading of Someone loves everyone:

(55)

S S
S S
DP

someone
[ ]

9x. [ ]
x

0

BBBBBBBBB@

S S
S S

(DP\S)/DP
loves
[ ]

[ ]

loves

S S
S S
DP

everyone
8y. [ ]
[ ]

y

1

CCCCCCCCCA

=

S S
S S

S
someone loves everyone

8y. [ ]
9x. [ ]

loves y x

Lower
)

S S
S

someone loves everyone
8y.[ ]

9x. loves y x

Lower
)

S
someone loves everyone

8y. 9x. loves y x

Here are some of the details of the derivation: someone undergoes ordinary LIFTing,
which adds a layer on top; loves undergoes ordinary LIFTing twice, adding two
layers on top; everyone undergoes the variant LIFT, as described above, inserting a
layer in the middle; two instances of multi-tower combination occur, producing a
three-level tower in which the universal quantification occurs on the highest level,
and the existential quantification occurs on the middle level; the variant applica-
tion of LOWER collapses the bottom two levels, producing a two-level tower; and
an ordinary application of LOWER collapses the final two levels.

From this example, it is clear that the details of LOWER guarantee that oper-
ators on higher levels always outscope operators on lower levels. Taking inverse
scope, then, is a matter of applying LIFT in such a way that the quantificational
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effect occurs on a higher level. It should be clear how a sentence with three quan-
tifiers will be predicted to be six ways ambiguous.

Exercise 12: Which scoping of Most professors gave a
grade to every student requires four-level towers?

4.2. Binding without indices: variable-free semantics

One of the ideas explored in this book is that binding can be analyzed as a
kind of scope-taking. On this approach, the pronoun or gap has one component
that lives on the lowest level of the tower (playing the role of the variable), and
another component that lives on a higher level (playing the role of the binding
operator), and that participates in scope-taking. The pronoun will take scope just
below the scope of the element that binds it.

Sentences in which multiple pronouns are bound by different quantifiers, then,
are quite literally a special case of scope ambiguity.

Note that pronouns in the tower fragment do not have any indices for distin-
guishing one occurrence from another. Instead, the role of indices is played by
the different levels of a multi-level tower. The way in which different pronoun oc-
currences select which quantifier will bind them is by selecting which level they
will take scope at. We can see this by examining a derivation for Someonei told
everyone j hei saw him j.

(56)

S S

S DPBS
DP

someone
[ ]

9x. ([ ] x)
x

0

BBBBBBBBBB@

0

BBBBBBBBBB@

S S

DPBS DPBS
((DP\S)/S)/DP

told
[ ]

[ ]

told

S DPBS

DPBS DPBS
DP

everyone
8y. ([ ] y)

[ ]

y

1

CCCCCCCCCCA

0

BBBBBBBBBB@

DPBS DPBS

DPBS S
DP
he
[ ]

lx.[ ]
x

0

BBBBBBBBBB@

DPBS DPBS

S S
(DP\S)/DP

saw
[ ]

[ ]

saw

DPBS S

S S
DP

him
ly.[ ]

[ ]

y

1

CCCCCCCCCCA

1

CCCCCCCCCCA

1

CCCCCCCCCCA

The subject, someone, takes scope at the middle level, and there is a chain of
subcategories DPBS on the middle level connecting someone to the pronoun that
it binds (he). The direct object, everyone, takes scope on the upper level, and there
is a separate chain of DPBS’s on that level connecting it with the pronoun that
it binds (him). The choice of variables in the semantic towers (x for someone and
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he, y for everyone and him) were chosen to enhance readability, but play no role
in the binding relationships.

In fact, this fragment is variable-free in the sense of Jacobson (1999) (see sec-
tion 11.1 below): every constituent denotes a combinator, i.e., a lambda term with
no free variables. In other words, there is no essential use of variable symbols.

Exercise 13: Derive a reading of Someonei told everyone j
hei saw hisi mother with binding as indicated using towers

that have at most two levels (where a tower of the form
C B

A
counts as having two levels).

4.3. The role of LOWER in the explanation for crossover

Now that later quantifiers are able to take scope over earlier ones, we must
make sure that the explanation for crossover still works. That is, we must make
sure that allowing a quantifier to take inverse scope over a pronoun does not allow
the quantifier to bind that pronoun.

It will turn out that preventing inverse scope from incorrectly deriving crossover
hinges on syntactic details of the LOWER type-shifter, namely, on the fact that
LOWER is restricted to applying to towers that have simple clauses (category S)
on their lowest level. (Though see the Afterword for a translation of the basic
analysis into a substructural logic that does not involve LOWER.)

In order for a later quantifier to take inverse scope over an earlier quantifier,
the later quantifier must occupy a higher layer in the tower. In any attempt to
incorrectly derive a crossover violation, then, the pronoun must take effect at a
lower level than the quantifier that is trying to bind it. That is, if the binding
effect of the pronoun inhabits level 2, the quantifier that is trying to bind it must
occupy at least level 3. Here is such an attempt for the sentence hisi mother loves
everyonei:
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(57)

0

BBBBBBBBB@

S S
DPBS S

DP
his
[ ]

ly. [ ]
y

S S
S S
DP\DP
mother

[ ]

[ ]

mom

1

CCCCCCCCCA

0

BBBBBBBBB@

S S
S S
(DP\S)/DP

loves
[ ]

[ ]

loves

S DPBS
S S

DP
everyone
8x.[ ]x
[ ]

x

1

CCCCCCCCCA

=

S DPBS
DPBS S

S
Everyone loves his mother

8x.[ ] x
ly. [ ]

loves (mom y) x

LOWER
)

S DPBS
DPBS

Everyone loves his mother
8x.[ ] x

ly. loves (mom y) x

At this point, the derivation cannot continue. In particular, the LOWER type-shifter
cannot apply, since LOWER requires an atomic S category below the line.

Yet there is no semantic obstacle to generalizing LOWER to apply to any cat-
egory in which the bottom and the top right corner match (schematically, any

category of the form
B A

A
). If we did generalize LOWER in this way, the seman-

tic result would simply plug the bottom value into the hole in the context above
the line. The final result would be 8x.(ly. loves (mom y) x) x, which reduces to
8x. loves (mom x) x. This is exactly the crossover reading we were hoping to rule
out. But as long as LOWER requires that the bottom and top right categories must
not only match, they must also specifically be S, we correctly rule out crossover.

This suggests a second possible strategy for explaining the weakness of weak
crossover. In section (2.5), we observed that if we suppose that comprehenders
can exceptionally resort to a right-to-left processing strategy, it would be possible
to arrive at an interpretation for crossover examples. In the presence of multi-
level towers that allow inverse scope, another possibility would be to exceptionally
generalize the LOWER type-shifter, so that it applies to cases such as the derivation
immediately above.

The claim, then, is that the full explanation for crossover is partly syntactic:
that quantificational binders are able to take scope (i.e., undergo LOWER) only
over expressions whose category is a simple S, not over expressions whose cate-
gory is DPBS (a clause with a functional dependency).
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Exercise 14: This claim does not mean that a quantifier can’t
have a pronoun inside its scope domain that is bound outside
that scope domain, as long as the pronoun takes scope on a
higher tower level than the quantifier. Show this by deriv-
ing a reading for Maryi thinks everyone saw heri on which
everyone takes scope only over the embedded clause.

The net effect is that a quantifier can take inverse scope over material to its
left, but still cannot bind pronouns to its left. In order for a pronoun to be bound
by a quantifier, the quantifier and the pronoun must take effect at the same level in
the tower, and the pronoun must follow the quantifier.

There is a systematic exception to this generalization about linear order, of
course, namely, reconstruction. The next two chapters show how reconstruction
fits into the picture.
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Movement as delayed evaluation: wh-fronting

In order to develop the treatment of evaluation order in more depth, it will
be necessary to extend the fragment to cover additional expression types. Recon-
struction in particular involves relative clauses and wh-questions. This chapter,
then, introduces elements that will underwrite the derivations in later chapters.
Yet this chapter does not merely develop tools needed later, but tells an essential
part of the larger story: the analysis of syntactic fronting, motivated independently
of any concerns about reconstruction, embodies the concept of delayed evalua-
tion that will be crucial for the explanation of reconstruction effects. In addition,
the same basic analysis of wh-fronting immediately explains superiority as an
evaluation-order effect.

Just to be clear, there is no literal movement in this fragment. Expressions
combine in the order determined by syntactic constituency, sometimes with their
categories and semantic values adjusted by type-shifters. In the analysis here of
a wh-question such as Who does John like ?, there is no level of representation
corresponding to what a movement analysis would consider the structure before
movement. Yet the syntax and the semantics guarantee that the sentence will be
interpreted as if the fronted wh-phrase had been evaluated in the gap position.

5.1. Simple relative clauses: gaps

In order to emphasize the correspondences between relative clauses and wh-
phrases, we’ll concentrate on relative clauses that contain relative pronouns such
as who and which. The first puzzle is to decide what should serve as the syntactic
category of the constituent that a relative pronoun combines with to form a relative
clause:
(58) a. the woman who [left]

b. the woman who [ left]
c. the woman who [John likes ]

We assign the nominal woman to the syntactic category N, with semantic type
e! t.

In (58a), the complement of the relative pronoun appears to be a verb phrase.
In (58c), however, the complement is John likes, a full clause missing a direct
object. In view of (58c), then, we can reanalyze the VP case in (58a) as a clause

49
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missing its subject, as shown in (58b). In the general case, then, relative pronouns
take a clause missing a DP somewhere inside.

This is where continuations enter the picture. A clause with a DP missing
somewhere inside is exactly the kind of expression that is in the category DP)S.
For instance, in Mary called everyone yesterday, the quantifier everyone has cat-
egory S( (DP)S): something that combines with an expression in the category
DP)S—that is, a clause missing a DP—to form a (quantified) S. The difference
between the quantifier case and the relative clause case is that for the quantifier,
the clause missing a DP surrounds the quantifier. That is, the quantifier combines
with the DP)S from the inside, as it were, from the very position of the missing
DP; this is the nature of in-situ scope-taking. In order to complete the analysis of
relative clauses, we need only find a way to recognize a clause missing a DP as a
member of the category DP)S from the outside.

The mechanism that will allow us to do this will be a silent pronoun-like ele-
ment in the gap position, written ‘ ’. It is an element in the category (DP)S)( (DP)S)
(more generally, it is a member of any category of the form A( A), and, like a pro-
noun, will denote an identity function. This gives the following analysis:

(59)

DP)S DP)S
DP

John
[ ]

j

0

BBBB@

DP)S DP)S
(DP\S)/DP

likes
[ ]

likes

DP)S S
DP

ly.[ ]
y

1

CCCCA
=

DP)S S
S

John likes
ly.[ ]

likes y j

LOWER
)

DP)S
John likes
ly.likes y j

This derivation is identical semantically to the derivation of John likes him given
above in chapter (2). The only difference is that the final syntactic category here is
DP)S (a clause missing a DP) rather than DPBS (a clause containing an unbound
pronoun).

Thus the gap is not only a semantic identity function, but a syntactic identity
function. To see this, note that the syntactic category of the gap is (DP)S)( (DP)S),
which has the form A( A, i.e., a syntactic identity function. It turns a continuation
surrounding it into something that can be recognized as a continuation from the
outside. This is why it makes sense for a gap to be silent: silence is what you
add to a string in order to turn it from a phrase in a category A into a phrase in
the same category A. In algebraic terms, silence is a unit for the syntactic merge
operation, just as multiplying by an identity fraction of the form x/x is a unit for
multiplication. That is, 3 ⇤ (x/x) = 3 for any choice of x. The logic of gaps as



In
Pres

s
5.2. FROM IN-SITU WH TO EX-SITU WH: FRONT 51

identity operators is developed further in Part II, especially in sections 16.6 and
17.10.

The relative pronoun who will be the kind of thing that can take a relative
clause and turn it into a nominal modifier. We’ll give a lexical entry for this
relative pronoun in the next section, after discussing the question word who.

Exercise 15: Nothing prevents the gap from taking scope
across several clause boundaries. Check this claim by as-
signing a category to thinks that will allow you to derive
woman who Mary thinks John likes .

Given an analysis of gapped clauses, we can turn to building wh-questions.

5.2. From in-situ wh to ex-situ wh: FRONT

In-situ wh resembles in-situ quantification, in that in both cases a DP takes
scope over surrounding material. The only difference is that while a quantified
DP turns the clause that contains it into a quantified clause, an in-situ wh-phrase
turns the clause that contains it into a question.

We won’t say much about the meaning of questions in this book (though see
Shan (2001a,b), Shan and ten Cate (2002), Shan (2002b, 2003b)). We assume
that the account here is neutral across most theories of question meaning. We
will, however, track in the syntax the kind of constituent that has been questioned.
Thus DP?S will be a question in which a DP has been questioned (e.g., Who left?),
(DP/N) ? S will be a question in which a determiner (category DP/N) has been
questioned (e.g., Which person left?), and so on. In general, for any categories A
and B with semantic types a and b , A ? B will be a complex category label whose
semantic type is whatever your favorite theory of questions says should be the
kind of question built from a function of type a ! b .

Then who has syntactic category (DP ? S)( (DP)S): something that functions
locally like a DP, takes scope over an S, and returns a question of category DP?S.

(60)

DP ? S DP ? S
DP

John
[ ]

j

0

BBBB@

DP ? S DP ? S
(DP\S)/DP

likes
[ ]

likes

DP ? S S
DP
who

who(ly.[ ])
y

1

CCCCA

LOWER
)

DP ? S
John likes who?
who(ly.likes y j)

This analysis proceeds exactly like the derivation of the relative clause John likes
given immediately above, except that instead of delivering a property. The
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result is the question version of a property, which can be glossed as ‘who has the
property of being liked by John?’.

Now, although in-situ wh-phrases are common in the world’s languages (e.g.,
in Japanese), in English, in-situ wh-phrases for the most part must be interpreted
as echo questions or metalinguistic questions, in which the questioner is asking
for the identification of a word, rather than an individual. In ordinary non-echo
wh-questions in English, in contrast, the wh-phrase must appear at the front of the
clause.

In movement-based grammars, the wh-phrase originates in the gap position
and moves to sentence-initial position. We achieve the desired effect here with-
out movement by making use of the gap motivated above for relative clauses,
and by assigning who to a slightly different additional syntactic category, (DP ?
S)/(DP)S) instead of (DP ? S)( (DP)S). The only difference between the in-
situ who and the ex-situ version is that the fronted wh-phrase combines with the
rest of the question using the ordinary categorial slash, ‘/’, rather than with the
continuation-mode slash, ‘( ’. As a result of this small change, the wh-phrase
precedes the rest of the question, rather than appearing inside of the question:

(61)
(DP?S)/(DP)S)

who
lk.who(lx.kx)

DP)S
does John like

lx.like x j
=

DP?S
Who does John like ?

who(lx.like x j)
The “fronted” wh-phrase combines with the question body via ordinary func-
tion/argument combination.

Here and below, we analyze does for convenience as a trivial syntactic element
with category S/S and identity-function semantics l p.p. The question body (does
John like ) is essentially the same as the relative clause derived above in (59).

Every wh-word will need an ex-situ variant that is systematically related to its
in-situ lexical entry. We can codify the relationship between the versions using a
new (and final) type-shifter called FRONT:

(62) AF( B
FRONT
) A/B

The syntactic feature F determines when the fronting rule will apply. The reason
we need to add this feature is that without some means of syntactic regulation,
not only wh-phrases, but ordinary quantifiers could front as well. Although this
kind of overt quantifier fronting may happen in some languages, it does not hap-
pen in English. See Kayne (1998) and Brody and Szabolcsi (2003) for relevant
discussion of overt scope in English versus Hungarian.

The effect of the type-shifter is purely syntactic, and does not change the se-
mantic value of the shifted expression in any way. Syntactically, the type-shifter
replaces the hollow forward slash (‘( ’) with a solid slash (‘/’). The hollow slash,
as we have seen, says that the nuclear scope of the wh-phrase must surround it
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(i.e., that the wh-phrase is in-situ). The solid slash says that the nuclear scope of
the wh-phrase must follow it (i.e., that the wh-phrase has been fronted).

So we have the following lexical entries for the relative pronoun whorel and
the question word whoq:

(63)

(N\N)F S
DP

whorel
lQx.(Qx)^ [ ]

x

FRONT
)

(N\N)/(DP)S)
whorel

lkQx.(Qx)^ (kx)

(64)

(DP?S)F S
DP

whoq
who(lx.[ ])

x

FRONT
)

(DP?S)/(DP)S)
whoq

lk.who(lx.kx)

Making use of the derivation of the gapped clause did John see given above, we
now have a derivation of a complete relative clause and of a complete wh-question:

(65)
(N\N)/(DP)S)

whorel
lkQx.(Qx)^ (kx)

DP)S
John likes
ly.likes y j

=
N\N

whorel John likes
lQx.(Qx)^ (likes x j)

This phrase is ready to combine with the nominal woman to form the modi-
fied nominal woman who John likes , giving it the meaning lx.(woman x)^
(likes x j).

(66)
(DP ? S)/(DP)S)

whoq
who

DP)S
does John like

ly.like y j
=

DP ? S
whoq does John like

who(ly.likes y j)

This question meaning asks which individuals have the property of being liked by
John.

5.3. Pied Piping

Sometimes more than just a single wh-word appears in fronted position. The
movement metaphor is that when the wh-word moves to the front, it brings (“pied-
pipes”) some of the surrounding words with it. For example, in addition to Who
did John speak to , we have To whom did John speak , in which the preposition
has pied-piped along with the wh-word.

Pied piping is handled here by postponing the application of the FRONT type-
shifter until the wh-phrase has already combined with additional material. For
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example, in order to derive questions in which to whom or which man has been
fronted, we derive as follows:

(67)

(DP?S)F (DP?S)F

PP/DP
to
[ ]

to

(DP?S)F S
DP

whom
who(lx[ ])

x

=

(DP?S)F S
PP

to whom
who(lx[ ])

to(x)

FRONT
) (DP?S)/(PP)S)

to whom
lk.who(lx.k(to(x)))

(68)

((DP/N)?S)F S
DP/N
which

which(l f .[ ])
f

S S
N

man
[ ]

man

=

((DP/N)?S)F S
DP

which man
which(l f .[ ])

f (man)

FRONT
)

((DP/N)?S)/(DP)S)
which man

lk.which(l f .k( f (man)))

In each case of pied piping, the lexical entry for the wh-word introduces an F fea-
ture, which remains part of the category of each successively larger constituent
until the FRONT rule is applied. The net result is that a larger constituent sur-
rounding the wh-word can appear in the fronted position. Because the FRONT
typeshifter does not affect the semantic value, the interpretation of a sentence that
involves pied piping will always be the same as one in which pied-piping has not
occurred:

(69) a. [Who] did John speak to? who(lx.speak (to(x)) j)
b. [To whom] did John speak? who(lx.speak (to(x)) j)

(70) a. [Which man] did John speak to? which(l f .speak (to( f (man))) j)

b. [To which man] did John speak? which(l f .speak (to( f (man))) j)

Note that the category of the gap will depend on whether the fronted phrase is a
DP or a PP.
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Exercise 16: Propose a constraint on the form of possible
gap categories that will rule out Left Branch extractions, in-
cluding *Which did John see man.

Pied Piping is not universally available. Some languages (such as German) do
not allow pied piping at all, in which case the FRONT type-shifter must be limited
to the lexicon.

5.4. Preview of delayed evaluation

The derivations in this chapter so far have all involved no more than two levels,
and the gap is always a simple function on individuals. In the next chapter, we will
consider more elaborate examples in which the gap is a function on more com-
plicated types. This will reveal a semantic effect that we call delayed evaluation.
In delayed evaluation, the semantic contribution of the fronted wh-phrase will be
exactly as if the wh-phrase had been evaluated in the position of the gap. Ob-
viously, this is exactly what is required in order to handle reconstruction effects.
As explained in the next chapter, Sternefeld (1997) and others call this technique
‘semantic reconstruction’. For us, semantic reconstruction is an automatic conse-
quence of the straightforward fronting analysis given in this chapter.

The key to delayed evaluation is that the FRONT type-shifter does not change
any semantic property of the wh-phrase. All the type-shifter does is determine
whether the wh-phrase appears syntactically embedded in-situ within its argu-
ment, or adjacent to it. The net effect is that the syntax and the semantics of the
fronted wh-phrase will be exactly as if it had been interpreted in the gap position.

The next chapter will consider delayed evaluation and reconstruction in some
detail.

5.5. Multiple wh-questions, and an account of superiority

There is an order-sensitive restriction on wh-fronting called superiority that is
reminiscent of crossover. On the account here, superiority follows from the same
evaluation-order effect that accounts for crossover.

Kuno and Robinson (1972):474 observe that moving a wh-phrase across an
in-situ wh-phrase results in ungrammaticality.
(71) a. Who ate what?

b. *What did who eat ?

The term “superiority” comes from Chomsky’s (1973) proposal for a general con-
straint that prohibits moving a phrase if a superior (roughly, a c-commanding)
phrase could have been moved instead. As a result, (71b) is ruled out because
the wh-phrase in object position moved when the superior wh-phrase in subject
position could have moved instead. Unlike the traditional crossover cases in chap-
ter 2, here the quantificational element (the wh-phrase) moves overtly rather than
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covertly, and the crossed element is an in-situ wh-phrase rather than a bound pro-
noun.

Building on Chierchia’s (1991, 1993) analysis of pair-list readings, Hornstein
(1995), Dayal (1996), and Comorovski (1996) all argue that superiority reduces
to weak crossover.

(72) a. Whoi i bought [proi what]?
b. *Whati did [proi who] buy i?

For instance, on Hornstein’s analysis, an in-situ wh-phrase denotes a Skolem func-
tion of type e! e whose argument corresponds to a silent pronoun (pro). If we
stipulate that in-situ wh-phrase pronominals must be bound by the raised wh-
phrase, then superiority violations create a classic weak crossover configuration,
as suggested by the movement analyses sketched in (72).

Although we agree with Hornstein, Dayal, and Comorovski that crossover
and superiority share an essential explanatory element—in our case, sensitivity to
order of evaluation—we do not attempt to reduce superiority to crossover per se.
In fact, for us crossover violations and superiority violations arise from different
binding mechanisms: crossover arises from the fact that binders must be evaluated
before the pronoun that they bind. Superiority, as we will see, arises from the
fact that a raised wh-word can only bind its wh-trace if the wh-trace is evaluated
before any in-situ wh-word. It is the fact that both of these binding mechanisms
are sensitive to order of evaluation that accounts for the resemblance between
crossover and superiority.

Here is a derivation of the grammatical multiple wh-question Who ate what?.
First, we derive the question body, ate what:

(73)

DP)(DP ? S) DP ? S
DP

ly.[ ]
y

0

BBBB@

DP ? S DP ? S
(DP\S)/DP

ate
[ ]

ate

DP ? S S
DP

what
what(lx.[ ])

x

1

CCCCA

=

DP)(DP ? S) S
S

ate what
ly.what(lx.[ ])

ate x y

LOWER
)

DP)(DP ? S)
ate what

ly.what(lx.ate x y)

Note that the gap category, (DP)(DP?S))( (DP)(DP?S)), has the required gen-
eral form of A( A, and denotes an identity function.
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Before we can complete the derivation, we must generalize the syntactic entry
for wh-words like who that was given above in (64).

(74)

(DP ? A)F A
DP

whoq
who(lx.[ ])

x

Here, A schematizes over S, DP ? S, DP ? (DP ? S), and so on: however many
elements in the clause have already been questioned, who adds one more. The
semantics remains the same for each of these syntactic categories. In the case in
hand, we instantiate this syntactic schema by choosing A = DP?S. After applying
FRONT, the syntactic category will be (DP ? (DP ? S))/(DP)(DP ? S)).

This category combines directly via ordinary function application with the
question body derived above in (73) to yield the desired result: after beta reduc-
tion, we have the multiple wh-question who(ly.what(lx.ate x y)) : DP?(DP?S).
It is easy to extend the derivation above to a derivation Who did Mary say ate
what?.

Now consider a superiority violation such as *Whati did who eat i?: an in-
situ wh-word (who) intervenes between the fronted wh-word (what) and its gap.
Because the fronted wh-word requires an argument of the form DP)A (for some
choice of A), the gap must take widest scope. Therefore the gap must take scope
over the intervening wh-word. By the reasoning given in chapter 4, in order for
the gap to take scope over something to its left, the gap must type-shift to operate
at a higher continuation level. Here is the way a derivation of the question body
who ate would have to go:
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(75)

DP)S DP)S
DP ? S S

DP
who
[ ]

who(lx.[ ])
x

0

BBBBBBBBB@

DP)S DP)S
S S

(DP\S)/DP
ate
[ ]

[ ]

ate

DP)S S
S S
DP

ly.[ ]
[ ]

y

1

CCCCCCCCCA

=

DP)S S
DP ? S S

S
who ate

ly.[ ]
who(lx.[ ])

ate y x

LOWER
)

DP)S S
DP ? S

who ate
ly.[ ]

who(lx.ate y x)

Because LOWER only matches a plain S below the horizontal line, there is no way
to continue the derivation.

The upshot is that a wh-trace must be evaluated before any in-situ wh-phrase
in the same clause. Given left-to-right evaluation, this generally means that the
trace must precede any in-situ wh-phrases.

Exercise 17: Provide a derivation that shows that the right
to left combination schema temporarily considered above in
section 2.5 generates superiority violations such as *What
did who eat . Hint: after studying the wh-word schema in
(74), consider how to chose A when you instantiate the gap
schema A( A.

There are a number of issues concerning multiple wh-questions that we will
not explore here. See Shan and Barker (2006) for a discussion of how to extend
this analysis to D-linked wh-words such as which, which have been claimed to
ameliorate superiority violations, and see Shan (2002a) for an explanation for how
a continuation-based strategy can account for Baker’s ambiguity, as described in
Baker (1968).
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Reconstruction effects

This chapter explores an approach to reconstruction that falls into the general
category of ‘semantic reconstruction’. In semantic reconstruction, the syntax and
the semantics collaborate in order to account for a number of reconstruction ef-
fects, but without any syntactic movement. The notion of semantic reconstruction
was first articulated by von Stechow in unpublished work we do not have access
to, and was further developed by Cresti (1995), Rullmann (1995), and Sternefeld
(1997, 2001). This chapter builds on work reported in Shan and Barker (2006),
Barker (2009), and Barker (2014a).

The key idea of the analysis here is that allowing pronouns and gaps to denote
higher-order functions can delay evaluation (in our terms) in a way that explains
some reconstruction effects. The fragment here is just one specific implementation
of this strategy. One of the points of interest here is that the higher-order functions
do not have to be stipulated in order to describe reconstruction, but rather follow
from the independently motivated aspects of the fragment developed in previous
chapters.

In chapter 2, we proposed an analysis of crossover that depends on a left to
right evaluation bias built into the basic composition schema. Reconstruction ap-
pears at first glance to pose a sharp challenge to any approach based on order:

(76) a. Which of hisi relatives does everyonei love ?
b. the relative of hisi that everyonei loves

In the wh-question in (76a) (possible answer: his mother), the pronoun precedes
the quantifier, yet there is a salient interpretation of this sentence on which the pro-
noun is bound by the quantifier. On this reading, the value of the pronoun varies
with the person selected by the quantifier. Likewise, there is a bound reading for
the relative clause in (76b) (possible continuation: ...is his mother). We shall see
that this sort of quantificational binding, as well as other types of reconstruction
effects, are in fact perfectly compatible with an evaluation-order explanation for
crossover.

Crucially, we will show that the possibility of backwards quantificational bind-
ing in the examples in (76) does not mean that evaluation order restrictions have
been suspended. In particular, crossover effects can emerge when the wh-trace
precedes the quantifier:

59
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(77) a. *Which of heri relatives loves everyonei?
b. *the relative of hersi who loves everyonei

We take it that these expressions have the same status as typical weak crossover
violations. The difference between the examples in (76) and the examples in (77)
is that in (77), the (semantically) reconstructed position of the pronoun, marked
with ‘ ’, precedes the quantifier. The rough descriptive generalization, then, is
that a quantifier can bind a pronoun just in case the quantifier is evaluated before
the reconstructed pronoun. What we will show it that, given a default evaluation
order of left to right, the facts above follow.

On syntactic reconstruction approaches, material including the pronoun syn-
tactically moves into the reconstruction position. Or, in some versions (e.g., Munn
(1994)), there is an unpronounced copy of the syntactic material within the gap
site. On the approach here, the meaning of the constituent containing the pronoun
will be packaged semantically in such a way that its evaluation will be delayed.
The net result will be that the evaluation of the pronoun will be timed as if the
pronoun had appeared in its reconstructed position.

In order to justify optimism that our approach to reconstruction is robust, we
will consider a range of reconstruction effects, including binding of anaphors, id-
iom licensing, and especially crossover phenomena, in the context of wh-interrogatives,
relative clauses, and wh-relatives.
(78) a. Which strings did John pull?

b. the strings that John pulled
(79) a. Which picture of herself does Mary like?

b. the picture of herself that Mary likes
(80) a. Which pictures of each other did they like?

b. the pictures of each other that they liked

The example in (78a) has a idiomatic interpretation on which it means that John
used his political influence in order to accomplish some goal.

We will develop a detailed enough picture of reconstruction effects to argue
that evaluation order remains a viable strategy for crossover, at the same time that
it accounts for a substantial range of reconstruction effects.

6.1. Reconstructing quantificational binding in a question

Given the emphasis in this book on quantificational binding, our key exam-
ple of a reconstruction effect will be a wh-question in which a quantifier binds a
pronoun that linearly precedes it.

All of the details of the grammar developed in previous chapters, including the
analyses of in-situ scope, binding, wh-fronting and pied-piping, were motivated
without any view towards handling reconstruction. Nevertheless, we are now in
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a position to derive at least some reconstruction effects without any additional
assumptions.

The derivations will be somewhat more complicated than the derivations given
so far. But they involve no new mechanisms or techniques: just LIFTing, LOWERing,
and FRONTing, with gaps having the category A( A for some choice of A.

The essential element in the analysis that gives rise to reconstruction effects is
the FRONT type-shifter. This type-shifter captures the similarity of the semantic
scope-taking behavior of in-situ wh-phrases with the syntactic scope-taking be-
havior of fronted wh-phrases. Because the type-shifter does not affect semantic
interpretation, it guarantees that the semantic value of the fronted wh-question
will be exactly the same as if it had occurred in-situ in the wh-gap position.

For instance:

(81) Which of hisi relatives does everyonei love ?

In order to provide complete details of the derivation of this example, we will
discuss its two main syntactic constituents in turn: the fronted wh-phrase which of
his relatives, followed by a derivation of the question body does everyone love .

Recall that the category of a simple pronoun is
DPBS S

DP
, which we will

abbreviate in derivations as ‘pn’.

(82)
((DP/N)?S)F S

DPBS DPBS
DP/N
which

which(l f .[ ])

[ ]

f

0

BBBBBBBBBB@

S S

DPBS DPBS
N/DP

relative-of
[ ]

[ ]

rel

S S

DPBS S
DP
his
[ ]

l z.[ ]
z

1

CCCCCCCCCCA

=

((DP/N)?S)F S

DPBS S
DP

which rel of his
which(l f .[ ])

l z.[ ]
f (rel z)

⌘ ((DP/N)?S)F( (pn)S)
which rel of his

FRONT
) ((DP/N)?S)/(pn)S)

which rel of his

Note that we have LIFTed in such a way that the main semantic effect of the wh-
word which occupies a higher layer than that of the pronoun (i.e., it outscopes the
pronoun). There is another, irrelevant derivation on which the pronoun outscopes
the wh-word, as when the pronoun is interpreted deictically.

The semantic value of the fronted wh-phrase as displayed in the tower is
lg.which(l f .g(lkl z.k( f (rel z)))), where g is a variable over two-layered (higher-
typed) continuations.
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We next derive the body of the question (ignoring the contribution of does for
simplicity):

(83)

pn)S pn)S
S DPBS

DP
everyone

[ ]

8y.[ ]y
y

0

BBBBBBBBB@

pn)S pn)S
DPBS DPBS
(DP\S)/DP

love
[ ]

[ ]

love

pn)S S
DPBS S

DP

lP.[ ]

P(lw.[ ])
w

1

CCCCCCCCCA

=

pn)S S
S S

S
(does) everyone love

lP.[ ]

8y.(P(lw.[ ])) y
love w y

LOWER (twice)
)

pn)S
(does) everyone love

lP.8y.(P(lw.love w y)) y

Here, P is a variable over pronoun meanings (category pn). The idea is that
instead of having a simple gap in which an individual of category DP is missing,
as in (20), we have a higher-order gap in which a pronoun is missing, with type
(e ! t) ! (e ! t). Note that the higher-order gap is still an identity function
both syntactically and semantically (see Barker (2009):20).

Putting the two halves of the example together, we have:

(84)
((DP/N)?S)/(pn)S)
which relative of his

lg.which(l f .g(lkl z.k( f (rel z))))

pn)S
does everyone love

lP.8y.P(lw(love w y)) y

This is a simple function/argument construction. The category of the entire ques-
tion, then, will be (DP/N)?S: a question asking for a function from nominals to
entities (as discussed below).

In order to understand how semantic reconstruction leads to delayed evalua-
tion of the pronoun, it is instructive to consider the series of beta reductions that
leads to a simplified representation of the semantic value of the question. As the
reduction proceeds, the material to be reconstructed—the semantic contribution
of the constituent relative of his—is underlined. The reconstructed material is
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destined to be the value of the gap variable P:

(85) (lg.which(l f .g(lkl z.k( f (rel z)))))(lP.8y.P(lw.love w y) y)

 which(l f .(lP.8y.P(lw.love w y) y)(lkl z.k( f (rel z))))

 which(l f .8y.(lkl z.k( f (rel z)))(lw.love w y) y)

 which(l f .8y.love( f (rel y)) y)

Gloss: ‘For what choice function f does every person y loves f (y’s relatives)?’
A possible answer for this question might be the tallest. In order to arrive at the
traditional answer, namely, his mother, we need yet higher types; that derivation is
somewhat more complicated, but requires no additional assumptions. Full details
are provided in Barker (2009).

It is worth emphasizing that there is no syntactic movement, nor is there any
sense in which the semantic beta reductions are actually moving semantic material
from one place to another. That is, the lambda calculus is an equational theory:
the series of reductions are a series of equivalences, not transformations. In other
words, the analysis here is directly compositional in the sense of Jacobson (2002):
every syntactic constituent has a well-formed semantic interpretation that does not
depend on any material outside of the constituent.

6.2. Despite reconstruction, crossover effects remain in force

In the simplest examples, crossover occurs when a pronoun precedes the quanti-
fier that binds it, as shown above in (35). In reconstruction examples, a pronoun
is allowed to precede a quantifier that binds it. But this does not mean that recon-
struction suspends crossover effects:

(86) ?Which of hisi relatives loves everyone?

In the analysis of Which of his relatives does everyone love ?, the binding analy-
sis requires the quantifier everyone to bind the virtual pronoun inside the gap site
in the manner illustrated above in (83). This requires the quantifier to precede
the gap site, conforming to the left-to-right restrictions on binding imposed by the
combination schema. In (86), in contrast, since the gap site precedes the quanti-
fier, there is no way for the quantifier to bind into the gap, for exactly the same
reason that the simple crossover binding attempts failed in (35).

In other words, even though semantic reconstruction can allow a quantifier
to bind a pronoun that precedes it, crossover restrictions remain in effect even in
reconstruction situations. In each reconstruction analysis below, we will argue
that crossover effects remain in force.
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6.3. Principle C effects are not expected

Principle C of the binding theory prohibits names and other referring expres-
sions from being c-commanded by a coreferent pronoun.

(87) *Hei likes Johni’s friends.

If reconstruction involved syntactic movement, reconstruction would potentially
create Principle C violations.

(88) Which of Johni’s friends does hei like ?

That is, if a portion of which of John’s friends including the pronoun syntactically
reconstructed into the gap position, the pronoun would c-command the name,
and the coreferent interpretation indicated by the subscripts would be predicted
bad. However, as Safir (1999):609 observes, this example is perfectly fine on the
relevant interpretation.

On the approach here, reconstruction is entirely semantic, so reconstruction
does not have any effect on c-command relations. This means that there should be
no Principle C effects arising from the movement of a name into a reconstructed
gap position.

Safir (1999):609 provides a wide range of examples in which a syntactic the-
ory of reconstruction incorrectly predicts Principle C violations, including these:

(89) a. Which biography of Picassoi do you think hei wants to read?
b. Which witness’s attack on Leei did hei try to get expunged from the

trial records?
c. Whose criticism of Leei did hei choose to ignore?

On our account, the sentences in (88) and (89) are correctly expected to be fine.
An approach involving overt syntactic reconstruction, on the other hand, must

consider Principle C violations to be the default, and then explain how some ex-
amples like these escape ungrammaticality through some separate mechanism.
For instance, Safir suggests that reconstructed referring expressions sometimes
function as if they were pronouns for the purposes of the binding constraints; he
suggests that this is a species of ‘vehicle change’.

The empirical status of Principle C violations in reconstruction contexts is sub-
tle and intricate. In addition to Safir (1999, 2004a) and Safir (2004b), see Heycock
(1995), Büring (2005), Sportiche (2006), and many others for discussions. In any
case, the grammaticality of these examples is exactly what is predicted under the
semantic reconstruction account developed here.

6.4. Reconstruction into relative clauses

As noted above in (76), it has long been observed that wh-questions bear a
striking resemblance to some kinds of relative clauses:
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(90) a. [Which relative of his] does everyone love ?
b. [the relative of his] that everyone loves

Just as there can be a quantificational binding relationship between everyone and
his in (90a), there can be a similar binding relationship in (90b). On the account
here, this suggests that the definite determiner the may have a lexical entry that
closely resembles the pied-piping lexical entry for the wh-determiner which. Here
is a candidate for such a lexical entry for the:

(91)

((DP/N)?S)F S
DP/N
which

which(l f .[ ])
f

DPF S
DP/N

the
the(l f .[ ])

f

Positing a lexical ambiguity specific to the is too flat-footed, since examples paral-
lel to (90b) exist for a, some, many, etc., so there is some systematic type-shifting
going on here. But in any case, no matter how we arrive at the variant lexical entry
for the, we get the following analyses in parallel with the reconstruction derivation
given above in section 6.1 for wh-questions:

(92) a. Which relative of his does everyone love ?
b. which(l f .8y.love( f (rel y)) y)

(93) a. the relative of his that everyone loves
b. the(l f .8y.love( f (rel y)) y)

One possible answer to the wh-question is the tallest; the corresponding com-
pletion to the relative clause is ...is always the tallest. In other words, this is an
analysis on which the reconstruction version of the definite description receives
(at least by default) a functional interpretation rather than a strictly referential one.
See Barker (2014a) for details of a functional semantics for the reconstructing de-
terminer.

On the topic of functional (intensional) descriptions, Grosu and Krifka (2007)
note that reconstruction is relevant for understanding what they call equational
intensional reconstruction relatives:
(94) a. the gifted mathematician that John claims to be

b. the(l f .claim(be( f (gifted-mathematician)) j))

As they note, one of the hallmarks of this construction is that the referent of the
description is not entailed to be a gifted mathematician. This is exactly what we
would expect by using the version of the from (91), since the semantic mate-
rial contributed by gifted mathematician will be (semantically) reconstructed into
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the gap position, which is in the scope of claim. There are many special prop-
erties of this construction that we cannot explore here; nevertheless, the general
approach to reconstruction here may provide some hint into how the interaction
of reconstruction and intensionality in this construction can be implemented in a
framework that does not make use of syntactic movement.

We do not assume that (91) is the only lexical entry for the. There will be
an ordinary, non-reconstruction version of the as well. The judgments of recon-
struction examples involving relative clauses are notoriously variable; but as, e.g.,
Bargmann et al. (2013) observe, the fact that there are any grammatical examples
requires the availability of a reconstruction analysis such as that provided by (91).

6.5. Relative pronouns with pied piping

Of course, one place where wh-phrases and relative clause formation overlap
is in relative pronouns:

(95) Relative pronouns:

(A)S)F S
A

who(se)/which
lx.[ ]

x

Given that the feature F triggers the pied-piping mechanism, we correctly predict
that that relative pronouns can participate in pied piping:

(96) a. the man [who] John saw
b. the man [whose mother] John saw
c. the man [the mother of whom] John saw

In addition, we also expect that when a relative pronoun pied-pipes another pro-
noun along with it, the reconstructed ordinary pronoun can be bound by a quanti-
fier that follows it:

(97) John is a man [[whose opinion of heri] every womani respects ]

Likewise, we predict that if the relative pronoun pied-pipes a quantificational
binder, if the reconstruction site follows a pronoun, an attempt at binding should
give rise to crossover effects:

(98) a theory [[every proponenti of which] {?hei/?hisi advisor} cites ]

Native speakers report that this sentence is somewhat hard to process. Our theory
predicts in addition to any other processing difficulties, it should have the status
of a weak crossover violation.
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6.6. Idioms

Idiom chunks—DPs that serve as parts of idioms, such as care in take good care
of someone, or lip service, as in pay lip service to—generally must occur as an
argument of a limited, specific set of verbs in order to receive their idiomatic
interpretation. Yet they can sometimes be separated from the relevant verb in
wh-interrogatives and in relative clauses:

(99) a. How much care did Mary say that John took of Bill?
b. the lip service that Mary said that John paid to civil liberties

In order for the idiomatic interpretations to be licensed, there must be some mech-
anism for transmitting information about the identity of the idiom chunk from its
displaced position to the rest of the idiomatic expression. This has traditionally
served as an argument for syntactic reconstruction (see, e.g., Sportiche (2006)),
since one way to make the needed connection is to syntactically reconstruct the
idiom chunk, at which point it will be reunited with the rest of its idiom.

Although the approach here is primarily semantic, nevertheless a limited amount
of syntactic information does flow between the gap site and the fronted con-
stituent, as we have seen above in pied piping examples. To handle idiom li-
censing, we need only provide some fine-grained syntactic features that will en-
able suitable syntactic bookkeeping to take place. For example, if the relevant
idiomatic sense of strings as in to pull strings subcategorizes for a DPstr (‘str’
for strings), then the noun strings will itself have category Nstr. We will need a
generalization of the lexical entry given above in (91) for interrogative which that
copies the relevant features from its nominal complement to the category of the
kind of gap it expects to find in its gapped-clause complement. Finally, we need
to instantiate the gap schema (A( A) by choosing A = DPstr)S. Then we have the
following derivation for Which strings did John pull? (the auxiliary did has once
again been omitted for clarity):

(100)

0

BBBB@

((DP/N)?S)F S
DPg/Ng
which

which(l f .[ ])
f

S S
Nstr

strings
[ ]

connections

1

CCCCA

0

BBBB@

DPstr)S DPstr)S
DP

John
[ ]

j

0

BBBB@

DPstr)S DPstr)S
(DP\S)/DPstr

pull
[ ]

use

DPstr)S S
DPstr

lx.[ ]
x

1

CCCCA

1

CCCCA
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The remainder of the derivation goes exactly as in (61) except that the category of
the question body is DPstr)S instead of DP)S, and likewise for the category that
the fronted wh-phrase is seeking to combine with. If strings were replaced with an
ordinary nominal, or if this special sense of pull were replaced with an ordinary
transitive verb, the two halves of the derivation would not match appropriately.
Because the gap faithfully carries with it the detailed syntactic category expected
at the gap site, further embedding of the idiomatic verb (e.g., Which strings did
Mary get so upset that John pulled?) will not disrupt the licensing connection.

6.7. Reflexives and each other anaphors

One classic reconstruction effect involves reflexives. Normally, reflexives must be
bound by some less oblique coargument in the same clause:
(101) a. John liked a picture of himself.

b. *Mary liked a picture of himself.
c. *John claimed Mary liked a picture of himself.
d. *A picture of himself was liked by John.

But in reconstruction situations, the reflexive can be separated from its binder:
(102) a. Which picture of himself does John like ?

b. the picture of herself that Mary likes

Assuming that the anaphors in (102) are grammatically bound, our account re-
quires (semantic) reconstruction.

The approach here follows the suggestion of (Dowty, 2007):97 that reflexives
are scope-taking expressions, building on the suggestion of (Szabolcsi, 1992) that
reflexives express the duplicator combinator W = lkx.kxx:

(103)

DP\S DP\S
(DP\S)/DP

saw
[ ]

saw

DP\S DP\S
DP

himself
lx.[ ]x

x

=

DP\S DP\S
DP\S

saw himself
lx.[ ]x
saw x

LOWER
)

DP\S
saw himself
lx.saw x x

On this view, reflexives are an in-situ VP modifier: they take scope over a VP, and
return a new VP whose next argument (the subject) gets copied into the anaphor
position. See chapter 15 below for a more general version of this anaphoric strat-
egy.

Once we have a treatment of ordinary uses of reflexive pronouns, we can com-
bine it with our reconstruction analysis.



In
Pres

s
6.7. REFLEXIVES AND EACH OTHER ANAPHORS 69

(104) Which picture of himself did John see?

(105)

((DP/N)?S)F S

DP\S DP\S
DP/N
which

which(l f .[ ])

[ ]

f

S S

DP\S DP\S
N

picture of himself
[ ]

lx.[ ]x
pic x

FRONT
)

((DP/N)?S)/(
DP\S DP\S

DP
)S)

which picture of himself

lg.which(l f .g(
lx.[ ]x
f (pic x)

))

The only difference between this analysis and the one for quantificational bind-
ing of an ordinary pronoun is that the the gap within the pied-pied material is a
reflexive-pronoun type gap rather than a standard pronoun.

Once again, the category of the fronted wh-phrase reflects the fact that it con-
tains a particular kind of anaphor. Instead of containing an ordinary bindable
pronoun, as in (76), here it is a reflexive pronoun, with corresponding changes in
the details of the category.

One additional wrinkle: as (106a) shows, a reconstructed reflexive can even
take an antecedent that is not in the same minimal clause as the reconstruction
site.
(106) a. Which picture of himself does John claim Mary liked ?

b. *John claimed Mary liked a picture of himself.
Our analysis generates both of these examples. To the extent that the indicated
contrast between the reconstruction example in (106a) and the non-reconstruction
example in (106b) is systematic, it suggests that reconstruction somehow enables a
reflexive to take advantage of a wider range of possible binders than it would have
been able to if it had been generated in the reconstruction position. One possible
strategy in the approach taken here would be to impose restrictions on the cate-
gories of the towers that clause-embedding predicates can take as complements;
but we leave this for future research.

Reconstruction of anaphors such as each other can be handled analogously:
(107) a. Which of each other’s papers did they read ?

b. the descriptions of each other that they offered
Like reflexives, each other must generally be c-commanded by the element that
binds it. We can therefore give each other a scope-taking analysis on which it



In
Pres

s
70 6. RECONSTRUCTION EFFECTS

takes scope just equal to the scope of its binder, e.g., category
DP\S DP\S

DP
. The

semantics will require that the binder be the kind of object that the quantificational
part of each other can distribute over, but otherwise the derivation will proceed
exactly as shown above for himself.

The analyses in this section (and only in this section) require adjusting the de-
tails of the LOWER type-shifter. Examination of the derivation in (103) will show
that we have applied the LOWER type-shifter to a tower in which the matching cor-
ners have the category DP\S rather than just S. There are several possible adjust-
ments, depending on what you think the right explanation is: if what the example
shows is that it is possible to evaluate verb phrases in addition to clauses, then
the LOWER rule needs to be generalized to accept either S or DP\S as a lowering
target; if what the example shows is that lowering can happen in many different
places, then the statement of the LOWER rule needs to be stated in a way that it
applies to any tower with matching corner categories, as long as those matching
categories are not of the form DPBA.

6.8. Conclusions concerning reconstruction

We’ve proposed that crossover in general follows from two assumptions: that
pronouns find their binders by taking scope, and so participate in the same scope-
taking system as their binders; and that the evaluation order that governs scope
relations defaults to left-to-right.

This chapter, building on Shan and Barker (2006), Barker (2009), and Barker
(2014a) explores a number of reconstruction effects, including quantificational
binding, wh-questions, relative clauses, and wh-relatives, idioms, and reflexives.
In each case, the analysis hinges on the application of the FRONT type-shifter,
repeated here:

(108) AF( B
FRONT
) A/B

This type shifter turns what would otherwise be an in-situ scope-taker (such as
a wh-phrase) into an expression that has been syntactically displaced to the left.
Because it adjusts the syntactic category of an expression without adjusting its
semantic value, the semantic value of the resulting expression is guaranteed to be
exactly as if the displaced constituent were evaluated in the position of the gap. We
call this delayed evaluation. This is what accounts for the semantic reconstruction
effects, including bindability as well as ability to bind.

Crucially, the effects due to the FRONT type-shifter are perfectly compati-
ble with default left-to-right evaluation, so the reconstruction effects discussed to
not constitute counterexamples to the continuation-based approach to crossover.
Indeed, quite the contrary: we have presented empirical data from a range of
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constructions that crossover is not suspended in reconstruction situations. For in-
stance, if a reconstructed quantifier follows a pronoun, it cannot bind the pronoun,
so crossover remains in effect even in the presence of reconstruction, as predicted
by our account.

Furthermore, since the FRONT type-shifter does not involve syntactic move-
ment, there is no syntactic reconstruction. This is why reconstruction typically
does not trigger Principle C violations, since there is no syntactic structure inside
the reconstruction gap site.

We would like to emphasize that the FRONT type-shifter is motivated entirely
by a desire to give the simplest possible analysis to wh-question formation, with-
out considering reconstruction examples. Nevertheless, it provides analyses not
only of syntactic pied piping, but also a variety of reconstruction effects, in a way
that remains fully compatible with a principled explanation for crossover.



In
Pres

s



In
Pres

s
CHAPTER 7

Generalized coordination, Flexible Montague Grammar

This chapter considers two semantic analyses that are related to each other
both historically and conceptually: Partee and Rooth (1983)’s generalized coordi-
nation, and Hendriks (1993)’s Flexible Montague Grammar. We argue that these
analyses both make implicit use of continuations. More specifically, we argue that
generalized coordination depends on a limited form of continuation-capturing,
and that the relevance of continuation-passing to Flexible Montague Grammar is
even more clearly evident.

Generalized coordination provides an application in natural language of a
technique that is common in programming with continuations, namely, repeated
execution of a single continuation.

We argue that although Flexible Montague Grammar provides a robust continuation-
based account of scope-taking, it is not well suited to reasoning about evaluation
order, and therefore does not provide an account of crossover, reconstruction, or
other order-sensitive effects.

7.1. Generalized coordination as re-executing a continuation

Partee and Rooth (1983)’s generalized coordination can be viewed as a form
of context capturing. The net effect is that a coordinated phrase such as A and B
denotes a function that takes its continuation, copies it, applies one copy to A and
the other to B, and then logically conjoins the results.

Partee and Rooth’s starting point is the observation that natural-language con-
junction (likewise, disjunction) can coordinate expressions in a wide range of cat-
egories:
(109) a. John left and John slept. and(left j)(slept j)

b. John left and slept. and(left j)(slept j)
c. John saw and liked Mary. and(saw m j)(liked m j)
d. John and Mary left. and(left j)(left m)

These examples illustrate coordination of Ss, VPs, transitive verbs, and DPs. As
the translations indicate, the truth conditions of (the relevant reading) of each of
these sentences can be accurately expressed by unpacking the coordination into
conjoined clauses. Of course, there are are a variety of other uses of and that
cannot be paraphrased by means of conjoined clauses (John and Mary are a happy
couple; the flag is red and white) that we will not discuss (see the more complete
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disclaimer in Partee and Rooth (1983):361). We will call the sense of and whose
meaning is equivalent to conjoined sentences GENERALIZED and.

Partee and Rooth (1983), building on work of Gazdar (1980), von Stechow,
and Keenan and Faltz (1985), give an analysis of generalized coordination that has
three parts. First, they stipulate that a CONJOINABLE TYPE is any type “ending
in t”. Examples include sentences (type t), verb phrases and common nouns
(type e! t), and quantificational NPs (type (e! t)! t), but not the basic (i.e.,
lexical) type of proper names (type e).

Second, they rely on a syntactic schema to generalize over the conjoinable
syntactic categories.

(110)
SYNTAX SEMANTICS
X ! Xl and Xr andha,b i ([[Xl]])([[Xr]])

Third, they provide a recursive rule characterizing how the meaning of generalized
and for complex semantic types relates to the meaning of and for simpler types.
More specifically, let L and R be meanings of type a ! b . Partee and Rooth
(1983) have:

(111) andha,b i(L)(R) = la.andb (L(a))(R(a))

where a is a variable over objects of type a . The base case says that andt is the
standard binary boolean operator over truth values.

On this analysis generalized and has a single meaning, but that meaning is
type-polymorphic (i.e., able to take arguments of different semantic types). For
instance, if we instantiate the syntactic schema for coordinating VPs, then the
denotation of and takes properties of type e! t as arguments; but if we instantiate
the syntactic schema for coordinating transitive verbs, then the denotation of and
takes relations as arguments, type e! e! t.

Equivalently, it is possible to think of (111) as a type-shifting rule, in which
case and is polysemous, where each distinct homophonous version of and takes
arguments of a single semantic type. Then there is one basic lexical meaning for
and (namely, the operator over truth values), and the various other senses of and
are related to each other and ultimately to the basic lexical meaning by means
of a type-shifting rule resembling (111). See Heim and Kratzer (1998):182 for a
discussion of this approach.

On either construal (type-polymorphic versus type-shifting), the claim is that
and has a meaning that is capable of relating properties, or relations, or any other
semantic object having a conjoinable type, in addition to truth values.

Now consider one way of achieving a similar analysis of generalized coordi-
nation in a continuized grammar. There is no need for a recursive semantic rule;
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all that is needed is a single lexical schema for and:

(112)

✓
S B

A

�
S B

A

◆�
S B

A
and

l rlk.(lk)^ (rk)

This entry for generalized coordination takes two expressions with matching cat-
egories and builds a coordinated expression of the same category. The only re-
quirement placed on the coordinated category is that the final result after taking
scope must be an S (this is the ‘ends in t’ part). The coordinated expression takes
for its semantic argument the continuation of an A relative to some enclosing B.
The generalized and takes that continuation (k) and uses it twice: once by feeding
it to the value of the left hand conjunct (l), and again by feeding it to the value of
the right hand conjunct (r), and conjoining the result.

Exercise 18: Derive John left and slept.

Exercise 19: Derive John and everyone left.

If we think of a continuation as the default future of a computation, i.e., what
is about to happen to a value, we can gloss this lexical entry as saying “Whatever
you are planning to do with the value of the coordinate structure, do that to the left
conjunct, also do it to the right conjunct, and conjoin the resulting truth values”.

Thus the compositional pattern expressed by Partee and Rooth’s recursive
type-shifting rule is built in to our continuation-based grammar. Or, to put it a bit
differently, the recursive denotation required for generalized coordination gives a
glimpse of the more general compositional structure provided by a continuation-
based grammar.

In section 3.2, we provided a simple lexical entry for and that coordinated
sentences, and noted that it made good predictions about the interaction of lin-
ear order with dynamic anaphora, without stipulating any order asymmetry in the
lexical entry for and. The analysis in this section generalizes that simple lexical
entry to handle coordination of multiple expression types, but there is still no need
to stipulate the order of update. The left-to-right evaluation default imposed by
the combination schema generalizes smoothly as well, so that we not only cor-
rectly predict a contrast between Johni entered and hei spoke versus Hei entered
and John?i spoke, in which full sentences are conjoined, we also correctly pre-
dict an analogous contrast between John met Maryi and spoke to heri versus John
met heri and spoke to Mary?i, in which verb phrases are conjoined. This interac-
tion between order and dynamic anaphora is not predicted by standard dynamic
treatments, e.g., Groenendijk and Stokhof (1991), which continuizes only at the
sentence level rather than uniformly throughout the grammar.
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7.2. Flexible Montague Grammar: implicit continuations

Building on ideas of Partee and Rooth (1983) and Keenan (1987), Hendriks
(1988, 1990, 1993) proposes a type-shifting system for scope-taking called Flexi-
ble Montague Grammar.

Because Flexible Montague Grammar involves type-shifters that (we will ar-
gue) constitute a form of continuation-passing, it makes an especially useful com-
parison with the explicitly continuation-based system developed here.

We will see that although Flexible Montague Grammar provides a robust ac-
count of scope, it does not also provide an account of evaluation order in general,
or crossover in particular.

Hendriks (1993):75 provides three type-shifting rules. One concerns inten-
sionality, and we will not discuss it here. The two essential rules for scope-taking
are Argument Raising and Value Raising, which we will discuss in turn.

7.3. Argument Raising

In order to allow a generalized quantifier to appear in a position where an
individual-denoting expression is expected, a type-shifting rule called Argument
Raising does two things simultaneously: it shifts the type of that argument posi-
tion to generalized quantifier type, and gives that argument scope over the other
arguments of the predicate.

Argument Raising (AR): if an expression f has type

a1 ! a2 ! ...! ai ! ...! an ! r

and translation f , then f also has type

a1 ! a2 ! ...! ((ai ! r)! r0)! ...! an ! r0,

with translation lx1x2...xi...xn.xi(lx. f x1x2...x...xn).
For instance, in order to combine an ordinary verb phrase of type e! t such as
left with a generalized quantifier subject of type (e! t) ! t such as everyone,
the verb phrase must first undergo Argument Raising:

(113)
e! t

left
left

Arg Raise
)

t t

e
! t

left
lP.P left

For ease of comparison, we are displaying the semantic types of Flexible Mon-
tague Grammar as if they were syntactic categories in our tower system. For
instance, the type (e ! t) ! t is displayed above as if it had been category
t( (e)t).
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In this example, the Argument Raising type shifter replaces an argument of

type e with an argument of type
t t

e
. This means that the predicate left shifts

from taking an individual-denoting argument to taking a generalized quantifier ar-
gument, at which point it is able to combine with a generalized quantifier subject.

The formulation of Argument Raising given here is slightly generalized com-
pared to Hendriks’ original formulation. To get Hendriks’ exact rule, choose
r0 = r. This generalization allows a scope-taking operator to deliver a final re-
sult type (r0) that is different from the original result type r. As we have discussed
in chapter 5, in general scope-taking operators can have result types that are dif-
ferent from the category of the expression they take scope over. For example, in
our analysis, the wh-word who takes scope over a sentence, which has category S,
but returns a question, with category DP ? S.

Unlike the tower system, Flexible Montague Grammar places no restrictions
on evaluation order. The order in which the Argument Raising schema applies to
a functor reflects the order in which the arguments of that functor will be evalu-
ated, and there are no restrictions on the order in which different instantiations of
Argument Raising apply. For instance, if our goal is to model the two scopings
of Someone saw everyone, we need to apply Argument Raising to the verb saw
twice.

(114)
e! e! t

saw
lxy.saw x y

AR
)

t t

e
! e! t

saw
lX y.X (lx.saw x y)

AR
)

t t

e
!

t t

e
! t

saw
lX Y .Y (ly.X (lx.saw x y))

When this doubly-type-shifted denotation for saw combines with everyone and
with someone, the second argument (syntactically, the subject) takes scope over
the first argument (the direct object), giving linear scope. If we had applied Argu-
ment Raising in the opposite order, we would have the same final type, but a de-
notation with the other evaluation order, namely lX Y .X (lx.Y (ly.saw x y)),
giving inverse scope.

Argument Raising gives one argument of a predicate access to one of its con-
tinuations. More specifically, it allows that argument to take scope exactly over
the domain of its local functor, as well as over the remaining arguments of that
functor.
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In the terms of the discussion in chapter 3, the single rule of Argument Raising
simultaneously accounts for the duality of DP meaning, as well as at least some
portion of scope displacement and scope ambiguity.

Unfortunately, the rule of Argument Raising alone does not provide a com-
plete analysis of scope displacement and scope ambiguity. At least one additional
type-shifting schema (Value Raising) is needed in order for a scope-taking expres-
sion to take scope over more than its local co-arguments.

7.4. Value Raising

The second main type shifting rule, Value Raising, allows expressions to take
scope wider than their most local constituent. The role of continuations is even
clearer for Value Raising:

Value Raising (VR): if an expression f has type

a1 ! a2 ! ...! an ! r

and translation f , then f also has type

a1 ! a2 ! ...! an ! (r ! r0)! r0,

with translation lx1x2...xnk.k( f x1x2...xn).

By lifting the result type of a predicate from r to
r0 r0

r
, Value Raising explicitly

makes the result type a function on its continuation (here, k).
Argument Raising and Value Raising interact in such a way that the continua-

tion variable k of type r ! r0 introduced by Value Raising will come to have for
its value the continuation of the phrase in question, delimited by some enclosing
constituent whose result type is r0.

For example, Value Raising allows quantifiers such as everyone to be embed-
ded in possessives such as everyone’s mother left. Assume that the basic type of
the relational noun mother is a function of type e ! e mapping people to their
mothers. Then in addition to its basic type, mother will have a number of shifted
types, including:

(115)
e! e

mother
mom

Val Raising
)

e!
t t

e

mother
lxk.k(mom x)

AR
)

t t

e
!

t t

e

mother
lPk.P(lx.k(mom x))
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This doubly-shifted version of the mother function is suitable for transmitting
scope-taking ability from a generalized quantifier in possessor position to the pos-
sessed DP as a whole:

(116)
JmotherK(JeveryoneK) = [lPk.P(lx.k(mom x))](everyone)

= lk.everyone(lx.k(mom x))

On this analysis, the doubly-shifted mother functions as a modifier of generalized
quantifiers. Clearly, using shifted relational nouns, we can stack possessee phrases
as high as we like: everyone’s mother’s mother left (i.e., everyone’s grandmother
left) comes out as everyone(lx.left(mom(mom x))), and so on.

This derivation for everyone’s mother can be combined with the shifted left
from above in (113).

(117)
J(everyone’s mother) leftK = [lP.Pleft](lk.everyone(lx.k(mom x)))

= everyone(lx.left(mom x))

We can gain perspective on how this derivation works by examining the shifted
types:

(118)

0

@
t t

e

everyone’s

t t

e
!

t t

e

AR(VR(mother))

1

A
t t

e
! t

AR(left)
Chaining Argument Raising and Value Raising can allow a scope-taker to take
scope over an arbitrarily large context.

Exercise 20: The type-shifting part of Argument Raising and
Value Raising are highly parallel: both involve replacing one
element in the type (either xi in the case of Argument Rais-
ing, or r in the case of Value Raising) with some lifted type.
What prevents writing a single more general type-shifter that
handles both Argument Raising and Value Raising in a single
schema?

7.5. So how flexible is Flexible Montague Grammar?

Clearly Flexible Montague Grammar provides systematic access to continua-
tions. But how many of the continuation-based analyses developed here can be
reproduced within Flexible Montague Grammar? The answer we will give is:
many, but by no means all.

Emphasizing first the parallels between Flexible Montague Grammar and the
tower system, Flexible Montague Grammar has two levels of well-formedness
checking: a syntactic level of function/argument composition, and a semantic fil-
ter making sure that the type of (possibly shifted) arguments match that of their
(possibly shifted) functors. We can think of the official syntactic categories as the
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public syntax, the rules which characterize which strings can combine with which
other strings. The semantic types, then, are private syntactic categories, a record
of the internal adjustments that an expression makes in order to prepare for com-
bination with their possibly shifted siblings. This is parallel to the formal system
in Part I, with the role of public syntax played by the syntactic categories below
the horizontal line in the tower system, with the categories in the layers above the
horizontal line tracking type-shifting.

More substantively, like the tower system, Flexible Montague Grammar pro-
vides a general lifting mechanism: for any type t with translation f , choose n = 0
and apply Value Raising to derive (t ! t2)! t2 with translation lk.k f .

In contrast with our system, Flexible Montague Grammar does not provide a
general LOWERing mechanism. Instead, Argument Raising combines the effects
of lifting, scoping, and lowering into a single shifting operation. We will suggest
below that the absence of an separate, generally available LOWER operation that
prevents Flexible Montague Grammar from allowing full control over order of
evaluation.

Nevertheless, Flexible Montague Grammar is able to deliver a wide range of
scoping analyses. One source of this flexibility is that each application of Value
Raising introduces a new scope-taking layer, where each layer corresponds to one
level in a type tower. Using layers, it is possible to interleave the scopes of scope-
taking operators embedded in different predicates.

(119) Someone called two aides from every borough.

For instance, Flexible Montague Grammar can provide an analysis of this sentence
on which every outscopes someone, which in turn outscopes two. We will present
a derivation of this reading in some detail, despite the somewhat intricate details
involved, since it illustrates the sense in which Flexible Montague Grammar in
effect constructs continuation layers on the fly.

Before presenting the derivation, we should note that many authors claim that
the interleaved interpretation is not among the meanings that can be expressed
by the sentence in question (see Heim and Kratzer (1998):233 for discussion).
Certainly the interleaved interpretation is more difficult for most native speakers
than the other relative scopings. This issues makes it all the more revealing of an
example of the expressive power of Flexible Montague Grammar.

We can do all our type shifting for lexical items in advance:
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(120)

VR(AR(two))
t t

e!t
!

t t

t t

e

lP0k.P0(lP.k(two P))

aides (e! t) aides

AR(VR(from))
t t

e
! (e! t)!

t t

e!t
lPPk.P(lx.k(from x P))

every (e! t)!
t t

e
every

borough (e! t) borough

In order to allow a quantifier to take scope in between the cardinal and the univer-
sal, it is necessary for the universal to occupy a distinct layer from the cardinal.
The relevant layer is created by an application of VR to from (since from is the first
local predicate taking every borough as an argument). There is a corresponding
application of VR in the next predicate up (i.e., the cardinal two).

(121)
t t

e!t
!

t t

t t

e

two

0

@ (e! t)
aides

0

@
t t

e
! (e! t)!

t t

e!t

from
0

@ (e! t)!
t t

e

every

(e! t)
borough

1

A

1

A

1

A

(122)
t t

t t

e

: lk.(every borough)(lx.k(two(from x aides)))

The quantifier introduced by every occupies the highest layer, and the quantifier
introduced by two occupies the middle layer. Thus the continuation variable k
provides access to a scope position intermediate between every and two.

When combination reaches the matrix predicate called, we interleave the scope
of the quantifiers by interleaving applications of Argument Raising: AR first tar-
gets the direct object argument (giving narrowest scope to the lower layer of two
aides from every borough), then the subject (giving intervening scope to the some-
one), and finally, targeting the direct object again, giving widest scope to the
higher layer of the direct object.
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(123)
called e! e! t call

AR ) called
t t

e
! e! t lPy.P(lx.call y x)

AR ) called
t t

e
!

t t

e
! t lPQ.Q(ly.P(lx.call x y))

AR ) called
t t

t t

e

!
t t

e
! t lP 0Q.P 0(lP.Q(ly.P(lx.call x y)))

Applying the (multiply shifted) interpretation of called to the derived interpre-
tation of two aides from every borough shows how the the scope-taking layers
contributed by the direct object make a sandwich, with the subject denotation in
the middle.

(124)
([lP 0Q.P 0(lP.Q(ly.P(lx.call x y)))]
(lk.(every borough)(lx.k(two(from x aides)))))

=lQ.(e.b.)(lx.Q(ly.[two(from x aides)](lx.call x y)))

Once we apply this verb phrase meaning to the generalized quantifier denoted by
the subject someone, we have every taking scope over someone, which takes scope
over two, which was our goal.

Although Flexible Montague Grammar generates a wide range of scope ambi-
guities, as we have just seen, it is not a fully general scope-taking mechanism. In
particular, there is no way for effects introduced by a functor to take wide scope
over its arguments. For instance, in Barker and Shan (2008):30, quantificational
determiners can take wide scope over their nominal arguments. In order to see
why this is not possible in Flexible Montague Grammar, imagine that the type of
the quantificational determiner is (e! t)! (e! t)! t (as usual). If the first
argument (the nominal) contains a quantifier (or other effect), it can shift via Ar-
gument Raising, but any application of Argument Raising will necessarily give the
nominal’s effect wide scope over the quantification introduced by the quantifier.

For a second example, it is not clear how to extend Flexible Montague Gram-
mar to handle the sort of parasitic scope advocated by Barker (2007) and discussed
in detail in Part II of this book.

Whatever the merits of these analyses, our point here is that there are proposals
for scope-taking in the literature that go beyond the expressive power of Flexible
Montague Grammar.
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7.6. Adding binding to Flexible Montague Grammar

Because Flexible Montague Grammar separates scope-taking into layers, we
can consider adding a Bind type-shifter that serves the same purpose as the one
given in our main system.

Binding for Flexible Montague Grammar: if an expression f has
type

a1 ! a2 ! ...! ((e! r)! r0)! ...! an ! r

and translation f , then f also has type
a1 ! a2 ! ...! ((e! (e! r))! r0)! ...! an ! r,

with translation lx1x2...xi...xn. f x1x2...(lx.xixx)...xn.

If we give pronouns the category DP and the type
e! t t

e
, then we would have

a suitable derivation for the bound reading of, say, Everyonei loves hisi mother.
(This strategy relies on the slight generalization of Argument Raising discussed
above, since it depends on the ability of a scope-taking element to manipulate
result types.)

However, because there are no restrictions on the order in which Argument
Raising applies to the arguments of a predicate, it would be equally easy to in-
correctly derive the weak crossover example *Hisi mother loves everyonei. We
could imagine adding constraints based on linear order, but only if we abandon
Hendriks’ strategy of basing his type-shifters purely on the semantic types of the
expressions involved. This is feasible, of course, although there will have to be a
considerable number of versions of both Argument Raising and of Value Raising
(basically, a different version for each possible linear configuration of arguments).
We could then forbid Argument Raising from targeting any argument to the left
of an argument targeted by a previous application of Argument Raising.

If we did so, then we would be faced with the problem of restoring the ability
to take inverse scope. We could do this by adding a variant of Value Raising that
allowed a rightmost argument to take its quantificational effect at a higher layer.
But because there is no way to eliminate layers in unembedded expressions, we
would then need to add a general Lower typeshifter independent of Argument
Raising.

Of course, once we add a binding type-shifter, make the system sensitive to
linear order, restore inverse scope with an internal Lift type-shifter, and add a
Lower type-shifter, we will have in effect recreated our main system.

Conclusion: Flexible Montague Grammar is a continuation-based system that
is adequate for generating a wide range of scope relationships, but it is not well
suited for exploring the role of evaluation order on interpretation.
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CHAPTER 8

Order effects in negative polarity licensing

We’ve argued that continuations are a natural fit for scope-taking, and that one
of the main advantages of using continuations for scope is that it makes possible a
principled account of order sensitivity for crossover and for reconstruction. What
other effects of evaluation order might there be? We suspect that the importance
of order has been underappreciated, in part because of the lack of formal tools for
accounting for order effects has prevented people from looking for them, or from
pursuing them when they find them.

In subsequent chapters, chapters 9 and 10, we will explore evaluation order
effects in donkey anaphora.

This chapter shows how evaluation order can shed light on what has long been
a puzzling sensitivity to linear order in negative polarity licensing.

(125) a. No one saw anyone.
b. *Anyone saw no one.

In general, negative polarity items (NPIs) such as anyone require the presence of
a licensor, illustrated here with the downward-entailing quantifier no one. We can
assume that the licensor quantifier takes scope over the entire sentence in both
examples. But it is not enough for the licensor to take scope over the NPI—it
must also precede the NPI.

(126) a. I gave nothing to anybody.
b. *I gave anything to nobody.
c. I gave nobody anything.
d. *I gave anybody nothing.

Ladusaw (1979) notes this mystery in his Inherent Scope Condition: “If the NPI
is clausemate with the trigger, the trigger must precede” (section 4.4). He goes
on (section 9.2) to speculate that this left-right requirement is related to quantifier
scope and sentence processing, just as we are claiming:

I do not at this point see how to make this part of the Inherent
Scope Condition follow from any other semantic principle. This
may be because the left-right restriction, like the left-right rule
for unmarked scope relations, should be made to follow from
the syntactic and semantic processing of sentences . . . .

85
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This is exactly the kind of explanation our formal system aims to provide. More
precisely, we will suggest that a trigger for licensing a negative polarity item must
not only take scope over the NPI, it must be evaluated before the NPI.

8.1. Negative polarity, order, and scope

The field of negative polarity licensing is vast and intricate, and we cannot
attempt a full-scale analysis here. Our more modest goal is to show how evaluation
order can interact with a rudimentary analysis in a way that improves the accuracy
of that analysis. Our hope is that an evaluation-order bias can be factored into a
more sophisticated account of NPI licensing.

Which polarity items are licensed or prohibited in a given linguistic environ-
ment depends, to a high but limited degree, on semantic properties of that envi-
ronment, as argued by Ladusaw (1979), Krifka (1995), Giannakidou (2011) and
Chierchia (2013), inter alia. For example, some NPIs can be licensed in certain
downward-entailing contexts, such as under the scope of a monotonically decreas-
ing quantifier. A quantifier q, of type (e! t)! t, is monotonically decreasing
just in case

(127) 8s1. 8s2.
�
8x. s2(x)! s1(x)

�
!q(s1)!q(s2).

Thus (128a) is acceptable because the scope of no one is downward-entailing,
while (128b) and (128c) are unacceptable.

(128) a. No one saw anyone.
b. *Everyone saw anyone.
c. *Alice saw anyone.

Note that it is a requirement that the negative polarity item be in the scope of
the licensor. To see this, observe that (128a) is unambiguous, and means only
¬9x9y.saw y x. If anyone could take wide scope, we would incorrectly predict
that (128a) could mean 9y¬9x.saw y x.

Yet merely being in the scope of a downward-entailing quantifier is not a suf-
ficient condition.
(129) *No one thought everyone saw anyone.

In this example, based on Linebarger (1980), even though anyone is in the nu-
clear scope of no one, the intervening presence of the upward-entailing everyone
disrupts the licensing relation. Like many researchers, we take such facts to show
that although negative polarity licensing is primarily semantic, it has an irreducible
syntactic component, and requires careful attention to the syntax/semantics inter-
face.

Going one level deeper, whether an operator disrupts NPI licensing in a partic-
ular sentence is not purely a function of syntactic configuration, but also depends
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on scope relations. If the potential disruptor does not take scope over the NPI in
question, there is no disruption:

(130) a. No one gave anyone everything.
b. ¬9z9y8x.gave x y z
c. *¬9z8x9y.gave x y z

If the indefinite NPI anyone outscopes the universal everything, as in the para-
phrase in (130b), the subject quantifier no one licenses the NPI, so that (130a) is
grammatical on the given interpretation. These truth conditions require only that
no single person received everything.

If the universal does take scope over the NPI, as in the paraphrase in (130c),
the truth conditions require in addition that no one gives away everything, not
even by distributing the gifts across several recipients. In this case there is an
intervention effect, and the sentence is ungrammatical on this construal. Kroch
(1974), Linebarger (1980), and Szabolcsi (2004) discuss such intervention cases.

In other words, we need a system that does the following things: it must track
both syntactic and semantic features, it must impose a linear order bias, and it
must automatically take into account the interaction of scope with a syntactically-
mediated dependency. This describes in general terms exactly the system we have
developed above for explaining the interaction of scope with binding.

In this analogy, the connection between an NPI and its licensor corresponds
to the connection between a pronoun and its binder. In order to emphasize the
parallel with quantificational binding, here are some examples in which the ability
of the quantifier no one to bind a pronoun behaves similarly to its ability to license
the negative polarity item anyone:

(131) a. No onei called hisi mother.
b. No one called anyone’s mother.

A quantifier in subject position can bind a pronoun inside the direct object, just as
an NPI licensor can license an NPI in a similar configuration.

(132) a. [No onei’s mother] called himi.
b. [No one’s mother] called anyone.

Just as in quantificational binding, it is not necessary for the quantifier to c-
command the NPI in order to license it.
(133) a. *Hisi mother called no onei.

b. *Anyone’s mother called no one.

In the same configuration in which we see a crossover violation, the NPI licensing
does not go through. Apparently, in some configurations, it is not enough for the
licensor to take scope over the dependent element, it must also precede the NPI.

Because Fry (1997, 1999), Bernardi (2002), and Bernardi and Moot (2001)
focus on quantification and scope, they easily characterize how no must scope
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over any in order to license it, but they leave it a mystery why no must precede
any in order to license it. In particular, they wrongly accept all of (125)–(126).

Developing the analogy with crossover further, we now turn to cases in which
the licensor and the NPI both follow the verb.
(134) a. John sent no onei hisi grade.

b. John sent no onei anyone’s grade.
(135) a. John sent no onei to hisi home town.

b. John sent no onei to anyone’s home town.

Whether in the double-object construction, as in (134), or with an preposition-
marked indirect object, as in (135), binding and NPI licensing are fine when the
quantifier in question precedes the pronoun or NPI.

Note also that if we replace no one with no one’s mother in each of these exam-
ples, grammaticality is unaffected, showing once again that surface c-command is
not required for NPI licensing. Just to drive home this point:
(136) John gave [the phone number of no one’s mother] to anyone.

This example provides an example in which the licensor is deeply embedded
within the direct object, yet can still license a following negative polarity item.

But if the order of the quantifier and the dependent element is reversed, both
binding and NPI licensing are disrupted.
(137) a. *John sent hisi mother no onei.

b. *John sent anyone’s mother no onei.
(138) a. ?John sent hisi grade to no onei’s mother.

b. *John sent anyone’s grade to no one’s mother.

The examples in which the pronoun precedes the quantifier give rise to crossover
violations, and likewise the examples in which the NPI precedes the quantifier are
ungrammatical.

8.2. An evaluation-order account

The analysis here is based on discussion in Shan (2004), Shan (2003a), and
Barker and Shan (2006).

Our hypothesis is that continuations provide precisely the missing link be-
tween linear order and quantifier scope.

Just as in our account of binding, there will be a chain of matching syntactic
categories that links the dependent element to the thing that it depends on. Be-
cause this kind of linking can only be established within a single continuation
layer, it is subject to the left-to-right evaluation default.

In order to track licensing environments syntactically, we will make use of
clause subtyping, in the spirit of the approaches to negative polarity licensing
in (Dowty, 1994), and (Bernardi, 2002, Bernardi and Moot, 2001, Bernardi and
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Szabolcsi, 2008), Fry (1997, 1999), and others. Then let ‘S�’ be a special kind of
clause, a proper subset of the the category ‘S’. We can now assign the following
categories to different quantifiers in the lexicon:

everyone:
S S
DP

, no one:
S S�

DP
, anyone:

S� S�

DP
.(139)

The type of everyone is unchanged: it takes scope over a normal clause to form a
normal clause. The types of no one and anyone involve the newly introduced S�:
they both take scope over a negative clause, but no one forms a neutral clause,
whereas anyone forms a negative clause. As long as only neutral clauses count as
complete utterances, the only way for an NPI to be licensed is for there to be some
trigger upstream that knows how to turn a S� into an S.

(140)

0

BBBB@

S S�

DP
no one’s
¬9x.[ ]

x

S� S�

DP\DP
mother

[ ]

mother

1

CCCCA

0

BBBB@

S� S�

(DP\S)/DP
loves
[ ]

loves

S� S
DP

anyone
9y.[ ]

y

1

CCCCA

In this grammatical example, the category after combination and LOWERing is a
plain S, as desired. Note that just as with quantificational binding, c-command is
irrelevant in this approach for negative polarity licensing.

Clearly, if the order of the quantifier and the NPI are reversed, the derivation

will not constitute a complete utterance: the final category will be
S� S�

S
, which

does not match the input schema of the LOWER type-shifter.
Accounting for the way that upward-monotone quantifiers disrupt licensing

depending on their scope interpretation, as discussed above for (130), is also
straightforward:

(141)

S S�

DP
no one
¬9x.[ ]

x

0

BBBB@

0

BBBB@

S� S�

((DP\S)/DP)/DP
gave
[ ]

gave

S� S
DP

anyone
9y.[ ]

y

1

CCCCA

S S
DP

everything
8z.[ ]

z

1

CCCCA

In this derivation, both no one and the NPI anyone take linear scope over everyone.
The licensing relation goes through, deriving the attested interpretation described
in (130b).

If we try to allow the universal to take intermediate scope, the licensing rela-
tion is disrupted. In order for the universal to take inverse scope over the NPI, the
universal must LIFT, since that is the only way to achieve inverse scope. But since
we’re aiming for an interpretation on which the subject quantifier takes widest
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scope, it must also LIFT. But this is incompatible with no one satisfying the need
created by anyone to have its S� category replaced by a normal S.

(142)

S S�

S� S�

DP
no one
8x.[ ]x
[ ]

x

0

BBBBBBBBB@

0

BBBBBBBBB@

S� S�

S� S�

((DP\S)/DP)/DP
gave
[ ]

[ ]

gave

S� S�

S� S
DP

anyone
[ ]

9y.[ ]
y

1

CCCCCCCCCA

S� S�

S S
DP

everything
8z.[ ]
[ ]

z

1

CCCCCCCCCA

The S�’s on the top layer are forced by the lexical entry for no one. The S�’s on
the middle layer are forced by the lexical entry for anyone. After combination, we

are stuck with the category
S S�

S� S
S

. We can LOWER once at the bottom level, but

S� categories remain uneliminated, and the derivation is not complete.
Once again, in a way that is highly parallel to the situation with weak crossover,

inverse scope has disrupted a syntactically-mediated connection.
Of course, there are many other NPI licensors besides downward-entailing

quantifiers. To give just one example, we can give auxiliary-verb sentence nega-

tion not the category
S S�

Aux
(where ‘Aux’ is the syntactic category of a verb

phrase modifier). Then we correctly predict that the NPI in Alice did not see any-
one is licensed, but not *Anyone did not see Alice.

Exercise 21: What problem occurs when an NPI licensor
like no one or not occurs in a sentence in which there is no
negative polarity item? Propose two solutions, one in the
form of a type-shifting rule, and one that involves multiple
lexical items.

Exercise 22: Why not assign anyone the simpler category
S� S
DP

? Derive No one gave anyone anything.

Exercise 23: Show that doubly-licensed NPIs are correctly
predicted to be grammatical, e.g., No one doubted anyone
left. Assume doubted licenses NPIs, as in John doubts any-
one left.
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8.3. Other theories of order in NPI licensing

Recent works on negative polarity, even thorough and wide-ranging surveys
such as Giannakidou (2011), do not address order effects. We are currently aware
of only two theories of NPI licensing that consider contrasts corresponding to a
difference in order: de Swart (1998), and Collins and Postal (2014).

de Swart (1998) argues that a trigger must c-command an NPI in order to
license it, unless the sentence entails or implicates a fact that is ‘positive’ in some
informational sense.
(143) a. Examples with any relevance didn’t come up in the discussion.

b. Examples with no relevance did come up in the discussion.

According to this hypothesis, the reason the NPI in (143a) can precede its licen-
sor (the sentence negation) is because the sentence implicates the positive fact
in (143b). But even granting that examples like (143a) are systematically gram-
matical, and that informational structure is crucial in exactly the way suggested
by de Swart, there would still be a linear order mystery that remained to be ex-
plained. The reason is that, given the many counterexamples presented throughout
the chapter, we have to conclude that c-command is not a requirement for licensing
an NPI. Nor can we detect any difference in the kind of entailments or implica-
tures between the members of minimal pairs such that in (125). This means that
an explanation for the full pattern of sensitivity to linear order requires more than
sensitivity to informational structure. Our suggestion, of course, is that the re-
quired extra element is a general requirement that a quantificational trigger must
be evaluated before any NPI it licenses.

Collins and Postal (2014) (chapter 6) do not explicitly address linear order, but
they do discuss the following contrast:

(144) a. No man loves any woman.
b. *Any man loves no woman.

On their account, the subject and the direct object form a discontinuous ‘polyadic’
quantifier, quantifying over man-woman pairs. This situation arises when there is
a single abstract determiner [NEG SOME] that forms a part of two different DPs,
implemented perhaps by allowing a single expression token to participate in two
distinct merge operations. (A later rule inserts distinct copies into each position.)
So initially, the subject DP [[NEG SOME] man] and the object DP [[NEG SOME]
woman] are completely parallel with respect to their determiner position, and it is
up for grabs which one will surface as “no N” and which one as “any N”.

The symmetry is broken by a rule (see their chapters 6 and 8) that deletes the
NEG part of any component of a discontinuous determiner that is c-commanded at
LF by some other component. Then a morphological rule spells out [NEG SOME]
as no, and [SOME] as any. Therefore it is only when we add the assumption
that [[NEG SOME] man] c-commands [[NEG SOME] woman] at LF that we get
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(144a) correctly predicted good, and (144b) correctly predicted ungrammatical.
The order effects hinge, then, on making sure that the leftmost element of the
polyadic quantifier c-commands the other elements at LF.

The question, then, is what guarantees this? Collins and Postal assume that
DPs may be moved into LF position by Quantifier Raising. But, as they note in
their chapter 8, Quantifier Raising certainly does not guarantee that scope relations
at LF mirror linear order: to allow for inverse scope with ordinary (non-NPI)
quantifiers, it must be possible for, say, a direct object quantifier to c-command a
subject quantifier at LF.

Furthermore, it would be problematic to assume that c-command relations at
LF mirror c-command relations at the surface, even restricting attention specifi-
cally to polyadic quantifiers. In fact, as expected on our account and as illustrated
in (140), a quantifier can license an NPI even if the quantifier does not c-command
the NPI on the surface.
(145) a. John gave [the address of no one’s mother] to anyone.

b. *John gave [the address of anyone’s mother] to no one.
To the extent that there is a contrast between these examples, the challenge to the
syntactic approach of Collins and Postal (2014) is that it appears that it is order,
and not c-command relations, that determines which element can surface as an
NPI.

On our account, the contrast in (145) follows directly from the left to right
evaluation order built into the combination schema.
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Donkey anaphora and donkey crossover

In chapter 3, we suggested that the dynamic view of meaning arises naturally
from taking a continuation-aware perspective on composition. The reason is that
on the continuations view, a sentence denotes a function on its own continuation,
just like every expression type does. That is the same thing as denoting a function
on the remainder of the discourse in which it is embedded, which is the essence
of the dynamic view.

One of the main applications of dynamic semantics has been anaphora in gen-
eral, as discussed briefly in chapter 3, concentrating on donkey anaphora in par-
ticular (e.g., Groenendijk and Stokhof (1991, 1990)). We should consider, then,
what the tower fragment has to say about donkey anaphora.

In this chapter, we will consider donkey anaphora in conditional clauses, and
we will stick fairly close to the proposal in Barker and Shan (2008). In the next
chapter, we will consider several strategies for dealing with donkey anaphora
when the donkey indefinite is embedded within a DP.

Our account has a number of unusual features. Most notably, on our analysis,
an indefinite will only bind a pronoun if the indefinite takes scope over the pro-
noun. As we will discuss, this is an assumption which runs very much against the
grain of other analyses, which perhaps universally assume that a donkey pronoun
is not in the scope of the indefinite that controls its value.

We should say what we mean by being in the scope of an indefinite. On the
traditional dynamic view, there are supposed to be several kinds of scope-taking.
Since quantifier scope ambiguity is handled by the usual Quantifier Raising tech-
nique, an indefinite’s logical scope will be the material that it c-commands at LF.
But since binding is handled by treating clauses as updates on sets of assignment
functions, an indefinite’s binding scope will be the region over which it is able to
affect the value of a variable. Most dynamic theories are designed to enable the
binding scope of an indefinite to be larger than its logical scope.

In contrast, on the account here, there is only one kind of scope, namely, the
scope that corresponds to the continuation of the quantifier. A pronoun or other
expression will be in the scope of a quantifier just in case it is part of the material
that contributes to the continuation that serves as the semantic argument of the
quantifier. One way of stating the hypothesis developed in this chapter, then, is
that an indefinite’s binding scope is contained within its logical scope.

93
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This aspect of our analysis is not forced by taking a continuation-based ap-
proach. Rather, as we will explain, it arises in large part from a desire to keep
the formal complexity of the system as simple as possible. If we wanted to allow
a pronoun to covary with an indefinite that did not take scope over it, we would
need to add extra compositional mechanisms such as assignment functions, or
model-theoretic situations, or some other discourse-referent tracking mechanism,
all of which we have so far done without in this book. There would be no dif-
ficulty adding such mechanisms if desired; Charlow (2014) explains one way of
integrating additional machinery into a continuation-based core grammar.

But even if a separate mechanism for indefinites is ultimately necessary, it
will still be instructive and worthwhile to see how far we can get using only LIFT,
LOWER, BIND, FRONT, and the combination schema. We’ll argue that we can get
quite far even with our minimalist architecture.

After developing the basic account, we will return to the larger theme of
Part I, namely, evaluation order. We will show that the proposed analysis makes
good predictions about the effect of evaluation order on the availability of don-
key anaphora, including examples of so-called ‘donkey crossover’. Despite the
fact that traditional dynamic accounts are explicitly concerned with order effects
with respect to at least anaphora and coordination, those accounts at best fail to
make predictions about donkey crossover. (This is a point emphasized by Charlow
(2014).)

9.1. Donkey anaphora as in-scope binding

‘Donkey anaphora’ is the name for situations in which an indefinite and a
pronoun covary exactly as if the indefinite were binding the pronoun, yet there is
some reason to suspect that the indefinite should not be able to bind the pronoun.
(146) a. If a farmer owns a donkey, he beats it.

b. Every farmer who owns a donkey beats it.

In both of these examples, for each relevant case of a farmer and a donkey, the
value of the pronoun it tracks the choice of the donkey. The issue, then, is whether
the indefinite takes scope over and binds the pronoun, or whether the covariance
is achieved through indirect means.

In order to fit this discussion into the larger landscape explored in this book,
we already know that scope and binding can come apart in one way: crossover
examples are exactly cases in which a quantifier can take scope over a syntactic
position that it cannot bind. For instance, in Someone likes everyone, the quantifier
everyone can take scope over the subject someone, since on the inverse-scope
reading, there is a potentially different choice of liker for each choice of likee,
but in His mother likes everyone, it is not possible for the quantifier to bind the
pronoun in subject position. So there is strong evidence that the scope domain for
a quantifier can include regions that are excluded from the binding domain for that
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quantifier. Our explanation for this fact is that binding depends both on scope and
on evaluation order. Since the requirements for binding are more stringent than
the requirements for taking scope, the scope domain of a quantifier can be strictly
larger than its binding domain.

Donkey anaphora is supposed to be a case in which scope and binding come
apart in the other direction, where the binding domain of an indefinite is strictly
larger than its scope domain. The evidence for this claim, we will argue, is not so
strong. In fact, we will make a case in favor of the view that donkey anaphora is
ordinary quantificational binding, in which the donkey indefinite both takes scope
over and binds the donkey pronoun.

One reason people discount the possibility that the indefinite binds the pro-
noun in the ordinary way in examples like those in (146) is a tradition going back
at least to Evans 1977 and chapter 3 of May 1977 that says that the scope of all
quantifiers is clause bounded.

(147) a. *[Everyonei arrived] and [shei spoke].
b. A womani arrived and shei spoke.

If everyone can only take scope over the first clausal conjunct in (147a), that ex-
plains why it cannot bind the pronoun in the second. But it has been known at
least since Farkas 2003 (first published in 1981; see Barker (2014b) or Szabolcsi
2010 for a fuller picture of the data) that the scope options for indefinites are
strikingly different from those of every and certain other quantifiers. And in fact
when everyone in (147a) is replaced with an indefinite, as in (147b), covariation
becomes possible, as indicated by coindexing. We will continue to assume, as
we have throughout the previous chapters, that this fact has a simple explanation:
indefinites are able to take wide scope—in many cases, wider than the minimal
clause that contains them.

A second common reason to reject postulating a binding relationship in (146)
is the widespread belief that quantificational binding requires c-command. But
for reasons discussed in section 2.1, we assume that c-command simply isn’t re-
quired for quantificational binding. In any case, as we have emphasized repeat-
edly, our formal system certainly allows a quantifier to bind a pronoun that it
doesn’t c-command (e.g., as in the derivation in (32)). So in particular, a failure
to c-command is no impediment here to having indefinites take scope over their
respective donkey pronouns and bind them.

Thus we will suppose that the reason donkey indefinites appear to bind donkey
pronouns is because they do bind them, with exactly the same sort of binding that
holds between the quantifier and the pronoun in Everyonei thinks hei left.

However, we must still confront the fact that on our view, in order for the
indefinite to bind the pronoun, it must take scope over the pronoun. Clearly, giving
the indefinite scope over the entire sentence does not lead to the desired set of truth
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conditions:

(148) a. If a donkey eats, it sleeps.
b. 9d. (donkey d)^ (eats d ! sleeps d)

If the indefinite takes scope over the entire sentence, we get the truth conditions
for (148a) given in (148b). Given a sufficiently rich context, the sentence probably
has a reading along these lines (setting aside for now the oversimplification of
using material implication to model the semantics of the conditional). But as
Evans (1980:342) points out, the most natural reading of (148a) is not that there is
some special donkey that sleeps when it eats, but rather that when any donkey eats,
that donkey sleeps. Evans concludes that the indefinite must take scope inside the
antecedent clause, leaving the pronoun unbound.

This conclusion is too strong. A more conservative conclusion is that the in-
definite must scope underneath whatever operator delivers the universal force of
the generalization. Since this universalizing operator clearly takes scope over the
entire sentence, it remains possible for the indefinite to take scope under that oper-
ator, and yet still take scope over the entire clause, including over the consequent.

More concretely, if we associate the universalist force of the conditions with
the lexical item if, we have the following situation: as long as the donkey indefinite
takes scope under the if, we get reasonable truth conditions for the indefinite. And
as long as the if takes scope over the entire sentence, as it must in order to arrive
at the appropriate truth conditions, the indefinite will be free to scope over the
donkey pronoun, and to bind it.

The way in which we will make if a scope-taking operator is by giving it the
following lexical entry:

(149)

S S
(S/S)/S

if
¬[ ]

l pq.p^¬q

Crucially, in the semantic tower, the outer negation is above the horizontal line,
where it can take scope over the entire conditional. The conjunction and the inner
negation are below the line, in order to combine first with the antecedent, and then
with the consequent.
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(150)

S S
(S/S)/S

if
¬[ ]

l pq.p^¬q

0

BBBB@

S DPBS
DP

someone
9y. [ ]y

y

DPBS DPBS
DP\S

knocked
[ ]

knocked

1

CCCCA

0

BBBB@

DPBS S
DP
she

lx. [ ]
x

S S
DP\S

left
[ ]

left

1

CCCCA

The indefinite takes scope over the consequent and binds the pronoun, which ac-
counts for covariance. The outer negation contributed by the if takes even wider
scope. It is the interaction of the negation with the existential that delivers the
universal force of the conditional. After combination, we have

(151)

S S
S

¬9y. ((lx. [ ]) y)
knocked y^¬(left x)

Lower
)

S
¬9y. knocked y^¬(left y)

These truth conditions say that no one knocked without leaving, which is a rea-
sonable approximation of the truth conditions of a donkey conditional.

We know of one other proposal that a lexical item could introduce a negation
that takes scope separate from other semantic elements introduced by that lexical
item: Jacobs (1980) advocates decomposing German kein ‘no’ into negation plus
existential quantification so that other quantificational elements can take scope be-
tween the negation and the existential. The proposal remains controversial (Jacobs
(1980), Geurts (1996), de Swart (2000), Penka and Zeijlstra (2005), Penka (2012),
among others). In particular, Geurts (1996) criticizes lexical decomposition as im-
plemented by Jacobs as an unwelcome extension of the expressive power of the
formal system. However, that criticism does not apply here, since our analysis for
if does not rely on any formal resources beyond those already required for basic
quantification.

The next few sections will work through some of the basics that any account
of donkey anaphora has to deal with, including: the ability of universal quanti-
fiers to disrupt donkey anaphora; how the system distinguishes among multiple
indefinites, leading to a particularly satisfying solution to the problem of indis-
tinguishable participants; and the interaction of donkey anaphora with disjoined
antecedents. We do not, however, explore extending the analysis to an intensional
account of the conditional; see Barker and Shan (2008) section 3.3 for one way to
do this.
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In section 9.7, we discusses the interaction of our donkey anaphora analysis
with crossover phenomena. We argue there that our general evaluation-order con-
straint on combination makes good predictions about order asymmetries in donkey
anaphora.

9.2. Why does every disrupt donkey anaphora?

If a universal occurs in the antecedent, donkey anaphora is no longer possible:
(152) If everyone owns a donkey, it brays.

More precisely, there is no interpretation on which the indefinite takes narrow
scope with respect to the universal and still binds the pronoun.

As discussed above in section 3.3, previous dynamic accounts such as Dy-
namic Predicate Logic and Dynamic Montague Grammar define everyone in terms
of static negation, which is stipulated to block anaphora between an indefinite tak-
ing scope inside the negation and a pronoun outside the scope of negation.

Our account needs no such stipulation: the binding relationships follow im-
mediately from getting the scope of the quantifiers right. Recall from (147) that,
unlike indefinites, the scope of everyone is generally limited to its minimal clause.
In this case, the minimal clause is the antecedent. That means that the only pos-
sible analysis of the antecedent in (152) must close off the scope of everyone by
applying LOWER before the antecedent combines with if :

(153)

S S
S

Everyone owns a donkey
8x. 9y. donkey y^ [ ]

owns y x

LOWER
)

S
Everyone owns a donkey

8x. 9y. donkey y^owns y x

Because eliminating the quantificational level at which everyone takes scope also
eliminates any other quantifier on the same level and lower levels, whenever the
indefinite takes narrow scope with respect to the universal, the scope of the indef-
inite must also be limited to the antecedent clause.

There is no obvious semantic reason why universals can’t take wide scope be-
yond their minimal clause, so their scope limitations are presumably purely syn-
tactic. Like most leading accounts of donkey anaphora (including Groenendijk
and Stokhof’s (1991, 1990), Elbourne (2006)), we provide no formal mecha-
nism here that bounds the scope-taking of universals, though see Barker and Shan
(2006) section 6 for one strategy, and see Charlow (2014) for discussion.

9.3. Multiple indefinites: tracking bishops

The standard example of donkey anaphora contains more than one indefinite
(namely, a farmer and a donkey). In most treatments of binding, multiple binders
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are distinguished by means of different subscript indices, e.g., xi versus x j. As ex-
plained in chapter 4, in the tower system, since each binder can occupy a different
scope-taking level, there is no need for subscripts.

In addition, we shall see that providing distinct layers for each binding re-
lationship solves the celebrated bishop problem discussed by Heim (1990), El-
bourne (2006), and others.

We begin with the antecedent clause. We first apply the indefinite determiner a
to each of the two common nouns farmer and donkey, illustrated below for farmer.

(154)

S S
DP

�
N

a

lP.
9x.Px^ [ ]

x

N
farmer
farmer

=

S S
DP

a farmer
9x. (farmer x)^ [ ]

x

The following chapter, chapter 10, discusses other possible lexical entries for the
determiner a, in addition to the one displayed here.

We then apply BIND and LIFT to each of the two indefinite DPs a farmer and
a donkey, so that they occupy different binding levels from each other.

(155)
BIND
)

S DPBS
DP

a farmer
9x. (farmer x)^ ([ ]x)

x

LIFT
)

S DPBS
S S

DP
a farmer

9x. (farmer x)^ ([ ]x)
[ ]

x

We build the antecedent clause from three three-level meanings.

(156)

S DPBS
S S

DP
a farmer

9x. (farmer x)^ ([ ]x)
[ ]

x

DPBS DPBS
S S
(DP\S)/DP

owns
[ ]

[ ]

owns

DPBS DPBS
S DPBS

DP
a donkey

[ ]

9y. (donkey y)^ ([ ]y)
y

And we have a complete antecedent clause. Note that we cannot apply LOWER,
since each continuation layer still has unresolved side effects (the DPBS’s). We
will eventually lower after the consequent has been combined with the antecedent,
at which point both pronominal dependencies will have been resolved.
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Next, we build the consequent by LIFTing two pronouns, waiting to be bound
at two different levels.

(157)

DPBS S
DPBS DPBS

DP
he

l z. [ ]
[ ]

z

S S
DPBS DPBS
(DP\S)/DP

beats
[ ]

[ ]

beats

S S
DPBS S

DP
it
[ ]

lw. [ ]
w

We finish the derivation using the lexical entry for if given in (149) above (ad-
justed by an application of LIFT).

(158)

S S
S S
(S/S)/S

if
¬[ ]
[ ]

l plq. p^¬q

S DPBS
S DPBS

S
a farmer owns a donkey
9x. (farmer x)^ ([ ]x)
9y. (donkey y)^ ([ ]y)

owns y x

DPBS S
DPBS S

S
he beats it

l z. [ ]
lw. [ ]

beats w z

=

S S
S S

S
If a farmer owns a donkey he beats it

¬9x. (farmer x)^ ((l z. [ ])x)
9y. (donkey y)^ ((lw. [ ])y)
(owns y x)^¬(beats w z)

With two applications of LOWER and some routine lambda conversion, we have
the following analysis of the standard donkey sentence:

(159) If a farmer owns a donkey, he beats it.
¬9x. (farmer x)^9y. (donkey y)^ (owns y x)^¬(beats y x)

These truth conditions require that every farmer beats every donkey that he owns,
which is one of the accepted interpretations of the donkey anaphora interpretation
of the sentence.

The D-type situation-based account (using Elbourne’s name for the approach;
some people prefer ‘E-type’) first proposed by Heim (1990) (adapting ideas in
Berman (1987), and further developed by Elbourne (2006)) provides truth con-
ditions for the standard donkey sentence that say, roughly, that every minimal
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situation of a farmer owning a donkey can be extended to a situation in which the
(unique) farmer in that situation beats the (unique) donkey in that situation. These
truth conditions are compatible with situations in which a farmer owns more than
one donkey, since given a theory of situations such as that in Kratzer (1989), we
can choose each minimal situation so small that it contains only one farmer and
only one donkey, provided we also stipulate suitable persistence behavior, as dis-
cussed by Zweig (2008).

However, as pointed out by Kamp (according to the lore in Heim (1990)),
sometimes even the minimal situation must contain more than one entity that
matches the descriptive content of a D-type pronoun.

(160) If a bishop meets a bishop, he blesses him.

The problem with (160) is that any situation in which a bishop meets a bishop, no
matter how minimal, presumably contains two bishops. If we take the pronoun
he as a D-type pronoun expressing the content the bishop or even the bishop who
meets a bishop, the uniqueness implication due to the definiteness of the descrip-
tion fails, since there is no unique bishop in any of the relevant minimal situations.

Elbourne (2006):147 explains how to reconcile intuitions about bishops with
a situation-based account. The solution depends on supposing that the implicit
descriptive content of the D-type pronouns can be pragmatically enriched with a
certain kind of property that distinguishes between the two bishops. (See Barker
and Shan (2008) and Elbourne (2009) for more detailed discussion of Elbourne’s
account.)

On the present proposal, bishop sentences are perfectly straightforward and
require no special assumptions. The derivation is identical to the one given above
for the farmer/donkey sentence (after substituting the appropriate words), giving
the following truth conditions (compare with (159) above):

(161) If a bishop meets a bishop, he blesses him.
¬9x. (bishop x)^9y. (bishop y)^ (meets y x)^¬(blesses y x)

Thus bishop sentences pose no special difficulties on our account.

9.4. Conjoined antecedents

Elbourne (2006, 2009) argues that it is virtue of the D-type analysis that it fails
to predict donkey anaphora for certain configurations of conjoined DPs.

(162) If a bishop and a bishop meet, he blesses him.

In contrast with the standard bishop sentence,

(163) If a bishopi meets a bishop j, hei blesses him j

in which meet is used transitively, it is hard to interpret the pronouns in (162) as
taking the indefinites as antecedents. On the D-type account, in the conjoined
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case, the situation-building algorithm treats the two indefinites perfectly symmet-
rically. This prevents the covert definite descriptions contributed by the pronouns
from being pragmatically enriched in a way that allows distinguishing the two
bishops, and the example is rendered infelicitous by the failed uniqueness presup-
position of the definite descriptions.

Certainly, our account predicts that the conjuncts can serve as (separate) an-
tecedents for the two pronouns. But in the general case, this is necessary:

(164) If a woman and a man meet, she asks him for his number.

The D-type account can also explain the availability of anaphora in this case, since
each conjunct’s distinctive lexical content provides plenty of semantic leverage for
the covert descriptions denoted by the pronouns on the D-type account to be able
to distinguish between the participants in the antecedent situation.

However, it is possible to find cases in which the conjuncts are semantically
distinct, yet the overall situation is symmetric enough that donkey anaphora be-
comes infelicitous:

(165) a. #If John and Bill meet, he falls asleep.
b. #If a butcher and a baker meet, he pays him.
c. #If a man with a dog and a woman with a dog meet, it barks at it.

The D-type and continuations accounts both predict that these sentences have vari-
ous readings involving donkey anaphora, yet anaphoric interpretations are difficult
in a way that we feel is just like the difficulty of (162). The problem with the sen-
tences in (165), then, is that they provide no traction for deciding which of the
possible anaphoric relations is the intended one.

As Elbourne (2009) points out, from a purely semantic point of view, the clas-
sic bishop sentence is equally symmetric. Why then don’t we feel any hesitation
in selecting a binding configuration? Elbourne (2009) considers the possibility
that the feeling of uncertainty disappears when the choice of a binding pattern is
immaterial to the truth conditions. And indeed, if we modify the conjoined variant
of the bishop sentence so the choice of anaphora resolution makes a difference to
the overall truth conditions, a curious effect emerges:

(166) If a bishop meets a bishop, he is older.

Both our account and the D-type account predict that this sentence ought to have
at least two grammatically distinct (but truth-conditionally equivalent) readings,
depending on whether the pronoun is resolved to the first bishop or the second
bishop. We judge that (166) gives rise to the same kind of uncertainty about how
to resolve the pronoun as in (162) and (165).

In any case, on our account, unlike the D-type account, we assume that any
infelicity of (162) must be pragmatic, and not a matter of grammar.



In
Pres

s
9.5. DISJOINED ANTECEDENTS 103

9.5. Disjoined antecedents

Disjoined antecedents give rise to a different set of issues. As noted by Stone
(1992), disjunction constitutes a challenge for at least some dynamic theories of
anaphora, including Groenendijk and Stokhof (1991) (DPL).

(167) If a farmer owns a donkey or a goat, he beats it.

The problem for DPL is that the indefinites a donkey and a goat introduce two
distinct discourse referents, neither of which is a suitable antecedent for it. This
challenge is hardly insurmountable, but does seem to require assumptions that go
beyond the basic theory of DPL. For instance, one possibility is to follow Partee
and Rooth (1983) and allow a phrase like John or Bill to introduce a new variable,
independent from the discourse referent introduced by either disjunct.

The D-type analysis has no trouble with disjunction: every situation that ver-
ifies the antecedent will either have a donkey in it or a goat, so there will always
be a suitable object for the pronoun it to describe. The descriptive content of the
pronoun will be something neutral between the two descriptions, something like
the animal, or perhaps the donkey or goat. (Though Leu (2005) argues that in the
general case, the content of the D-type pronoun will have to be so bleached that
it is essentially contentless, roughly equivalent to the entity.) Elbourne (2006:19)
concludes that disjunction provides an argument in favor of the D-type approach
over DPL.

Given the treatment of generalized coordination developed above in (112) in
chapter 7, no extra assumptions are needed.

(168)0

@
S S
DP

John

0

@

✓
S S
DP

�
S S
DP

◆�
S S
DP

or

S S
DP
Bill

1

A

1

A

0

@
DPBS S

DP\S
called his mother

1

A

Bind
)

0

@
S DPBS

DP
John or Bill

1

A

0

@
DPBS S

DP\S
called his mother

1

A

This derivation gives the truth condition

(169) called (mother j) j_ called (mother b) b .

In other words, the disjunction of John and Bill is perfectly able to serve as the
antecedent of a singular pronoun.

A similar derivation goes through for donkey anaphora, i.e., when the disjunc-
tion is in the antecedent and the pronoun is in the consequent:

(170) If John or Bill left, he called.
(left j! called j)_ (left b! called b)
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In order to bind the pronoun, the disjunction must scope over the consequent, in
which case the truth conditions come out as requiring whoever left to call.

If the disjuncts are indefinites rather than names, we get appropriate truth con-
ditions for sentences such as
(171) If a farmer owns a donkey or a goat, he beats it.

Exercise 24: Provide details for the derivation of If a donkey
or a goat entered, it left.

Stone and Elbourne claim that similar anaphora can occur with disjoined sen-
tences (as opposed to disjoined DPs):

(172) If Mary hasn’t seen John lately, or Ann misses Bill, she calls him.

On the D-type analysis, all that is required is that each minimal situation involved
in the antecedent of (172) contains a man. On our system, we simply choose

A=
S DPBS

S
for the syntactic coordination schema given in (112), which allows

each disjoined clause to provide its own binder independently of the other disjunct.
Thus, although disjunction poses difficulties for some specific dynamic theo-

ries of meaning (such as Groenendijk and Stokhof’s (1990, 1991), as discussed
by Elbourne (2006)), it by no means poses difficulties for all dynamic theories. In
particular, it works out fine in the analysis proposed here.

9.6. Indefinites with universal force in the consequent

The semantics of the conditional allow indefinites in the antecedent to take
what appears to be universal force: for every farmer and every donkey, that farmer
beats that donkey. On our split-scope analysis, this is because the indefinite takes
scope under a negation supplied by the lexical entry of if (and it is a matter of
logic that an indefinite under negation has the force of a universal).

Charlow (2010) observes that our analysis predicts that indefinites in the con-
sequent can also receive a universal-like interpretation.

(173)

0

BBBB@

S S
(S/S)/S

if
¬[ ]

l pq.p^¬q

S S
S

it rains
[ ]

rains

1

CCCCA

0

BBBB@

S S
DP

a woman
9x.woman x^ [ ]

x

S S
DP\S
leaves
[ ]

leaves

1

CCCCA

LOWER
)

S
If it rains, a woman leaves

¬ (9x.woman x^ (rains^¬(left x)))
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If the outer negation introduced by if outscopes the indefinite, and the indefinite
takes scope over the rest of the sentence, the predicted truth conditions require
that whenever it rains, every woman leaves.

For some reason, this universalist interpretation, though present, is remote in
(173). However, the availability of the universal interpretation is enhanced if the
subordinate if clause follows the consequent:

(174) A woman leaves if it rains.

In addition to an unproblematic reading on which it asserts that there is some
specific woman who leaves if it rains, this sentence also has a quasi-generic in-
terpretation that characterizes what women in general do when it rains. (See the
next section for discussion of the order of the antecedent and the consequent.) The
universal reading can be further enhanced by substituting whenever for if.

A universal interpretation is also enhanced in the presence of modification,
even when the antecedent precedes the main clause:

(175) If it rains, a wise woman leaves.

This variant does have an interpretation that requires every wise woman to leave
whenever it rains.

This phenomenon is reminiscent of subtrigging, in which indefinites receive
free-choice (i.e., universal) interpretations only in the presence of modification
(see, e.g., Dayal (1995, 1998) and Mascarenhas (2011) for theories and discus-
sion of subtrigging). However, subtrigging usually requires modification by a
postnominal phrase such as a relative clause, rather than by just a prenominal
adjective.

Our tentative conclusion is that although the factors that promote or suppress
the universalist readings are not well understood, such readings are available, as
predicted by our theory.

9.7. Donkey weak crossover

Our in-scope binding analysis of donkey anaphora predicts that donkey anaphora
will display the same order sensitivity as ordinary anaphora does. It is well known
(e.g., Büring 2004) that donkey anaphora out of a DP can give rise to robust
crossover effects.

(176) a. Most women who have a soni love hisi father.
b. *Hisi father loves most women who have a soni.

As the contrast in (176) shows, donkey anaphora requires the indefinite (a son) to
precede the covarying pronoun (his), even though the quantifier most takes scope
over the entire sentence in both (176a) and (176b).
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Büring derives the contrast in (176) from his assumption that a DP that con-
tains a donkey antecedent must c-command the donkey pronoun. Without in-
voking c-command, we explain donkey weak crossover just as we explain weak
crossover, as a consequence of left to right evaluation order.

The examples in (176) involve indefinites embedded inside of DP’s. We have
postponed a discussion of our analysis of donkey anaphora out of DP, and how
our theory of evaluation order explains the contrast in (176), until the next chapter.
However, we will consider the analogous issue for donkey anaphora in condition-
als.

In Barker and Shan (2008), we suggested that donkey anaphora out of condi-
tionals also gives rise to crossover effects.

(177) a. If a farmer owns a donkey, he beats it. (= 146a)
b.*?If he owns it, a farmer beats a donkey.

The anaphora from the antecedent into the consequent in 177a is good, but the
anaphora from the consequent into the antecedent in 177b is more difficult.

However, other similar examples of donkey cataphora seem to be much better,
as in this example from Chierchia (1995:129):

(178) If it is overcooked, a hamburger usually doesn’t taste good.

In Barker and Shan (2008), we questioned how systematic this kind of cataphora
is. Elbourne (2009) criticizes us on this point, agreeing with Chierchia (1995), and
citing a number of additional examples of similar cataphora. We remain skeptical
of the full grammaticality of donkey cataphora, but we will offer some specula-
tions about what might be going on in examples like (178).

Elbourne (2009) argues that the canonical syntactic position of an if clauses is
subordinate to the main clause, and we find this plausible. If so, it suggests a more
complicated syntactic analysis than we have been assuming on which the initial if

clause has been fronted. If we give if the syntactic category
SF S
(S\S)/S

, then the

FRONT typeshifter predicts that the constituent formed by the if along with the
antecedent clause ought to be able to appear displaced at the front of the sentence,
using the same analysis we gave for wh-questions in chapter 5.

Exercise 25: What is the category of the gap that would be
required to complete a derivation with a fronted antecedent
clause?

Support for this possibility comes from the fact that when/whenever condi-
tionals are overtly wh-phrases (e.g., Whenever it rains, it pours means roughly the
same thing as If it rains, it pours). We saw in chapter 5 that several varieties of
wh-words trigger FRONTing, including wh-question words and relative pronouns.
If antecedent clauses arrive at the beginning of a sentence through fronting, then
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any pronouns they contain would reconstruct in the way explained in chapter 6,
providing a derivation for (178) and similar examples.

So far, we have not found any examples that provide strong evidence in favor
of our crossover explanation. Fortunately, there remains one class of examples
that we find robustly and unproblematically confirm the predictions of our theory
of evaluation order. If we allow if clauses appear in their canonical subordinate
position after the main clause (i.e., in-situ, in the fronting analysis), donkey cat-
aphora is quite difficult:
(179) a. *Shei left if someonei knocked.

b. ?Heri mother left if someonei’s father knocked.
c. ?John beats iti if he owns a donkeyi

Elbourne (2009) tentatively suggests that donkey cataphora is possible if the cat-
aphoric pronoun is within the verb phrase of the main clause, but native speakers
find that donkey anaphora in (179c) is difficult enough that we are comfortable
predicting that it is a crossover violation.

In any case, our analysis predicts that for if clauses in sentence-final position,
it is a systematic pattern that an attempt to have a donkey pronoun in the main
clause that covaries with an indefinite in the subordinate if clause will have the
status of a crossover violation, as illustrated in (179).

9.8. Conclusions

The picture that we have drawn is very simple: a quantifier can only bind a
pronoun that it takes scope over. But since indefinites can take scope over more
than their minimal clause, they can bind pronouns in subsequent clauses. In par-
ticular, they can take scope over and bind donkey pronouns. The fact that they fail
to c-command those pronouns is irrelevant, because c-command is not a require-
ment for binding. However, since evaluation order is a requirement for binding,
donkey indefinites must be evaluated before the pronouns that they bind, which
means that the pronoun must follow the quantifier, or semantically reconstruct to
a position to the right of the quantifier. Otherwise, donkey weak crossover results.
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CHAPTER 10

Strategies for determiners

Throughout the book so far, we have always used syntactically simple quan-
tifiers such as everyone and someone. The only exception was the discussion
of donkey anaphora in the previous chapter, in which we used indefinites like a
farmer; however, that was primarily for the sake of the naturalness of the exam-
ples, since nothing there depended on the indefinites being syntactically complex.
In this chapter, we extend the fragment to quantificational determiners.

We will consider several strategies for managing the interaction of quantifi-
cational determiners with side effects such as scope-taking and binding. The
main empirical arguments distinguishing among the strategies involve donkey
anaphora. Although questions about determiners will remain, we will suggest
that no matter how those issues are resolved, predictions about evaluation order
and crossover are borne out.

10.1. Donkey anaphora from relative clauses

There are two classic cases of donkey anaphora. The first case involves condi-
tionals (If a farmer owns a donkey, he beats it), and was discussed in the previous
chapter. We argued that the indefinite takes scope over and binds the donkey
pronoun, contrary to the standard wisdom. This chapter extends the argument to
the second case, which involves donkey indefinites inside the nominal argument
of a quantificational determiner, as illustrated here using examples from Evans
(1977:117)):
(180) a. Most men who own a car wash it on Sundays.

b. Every man who owns a donkey beats it.

Evans provides the following assessment of these examples:
If the sentence is to express the intended restrictions upon the
major quantifier—that of being a car- or donkey-owner—it would
appear that the second quantifier must be given a scope which
does not extend beyond the relative clause, and this rules out a
bound variable interpretation of the later pronouns.

Once again, the conclusion is too strong. The conclusion is warranted only if the
only way for the indefinite to take scope wider than the relative clause is to also
take scope over the quantificational determiner. Just as in the conditional case, we

109
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will show that it is perfectly possible for the indefinite to take scope wider than
the relative clause yet still narrower than the quantificational determiner.

In fact, we will consider a range of strategies for analyzing quantificational
determiners. This chapter owes much to discussions with Simon Charlow, and
in particular to Charlow (2010) and to Charlow (2014). Developing ideas in
Shan (2001c) and other work, Charlow advocates combining a continuation-based
grammar with additional compositional machinery, including relativizing expres-
sions to a sequence of individuals, and modeling indefinites via Hamblin-style
alternatives. Although there is much to recommend a multi-mechanism approach,
we will pursue a more parsimonious approach here, in order to see how much of
the empirical landscape can be covered using only towers in their simplest form.

The larger goal of the chapter will be to argue that nothing about donkey
anaphora out of DP challenges the main empirical claim of the book, which is
that evaluation order can explain crossover.

To begin the discussion, consider the lexical entry given above in (154) for the
indefinite determiner a, repeated here along with the analogous entry for every:

(181)

S S
DP

�
N

a

lP.
9x.Px^ [ ]

x

S S
DP

�
N

every

lP.
8x.Px ! [ ]

x

On this analysis, these determiners combine with an argument of category N hav-
ing semantic type e! t, and returns a scope-taking DP of generalized quantifier
type, (e! t)! t. This is a direct translation of the standard (extensional) treat-
ment of quantificational determiners as in, e.g., Barwise and Cooper (1981). As
far as we know, nothing goes wrong if these lexical entry are present, and we will
continue to assume that they are available.

However, they are not sufficient, since they do not allow for side effects initi-
ated within the restriction. In particular, they do not lead to an account of donkey
anaphora. The reason is that in order to get the desired truth conditions for (180b),
the indefinite must scope under the universal, since there must be a potentially dif-
ferent donkey for each farmer. But, given the lexical entry in (181), the only way
for the indefinite to scope under the universal would be for the indefinite to take
scope only within the relative clause, in which case the indefinite will be unable
to bind a pronoun in the nuclear scope of the universal. Both of these derivations
lead to grammatical interpretations, so nothing goes wrong; but neither leads to a
donkey anaphora interpretation.

For the sake of explicitness, in the next two sections we will provide detailed
derivations illustrating these two types of derivations: one on which the indefinite
scopes too low for donkey anaphora, and one on which the indefinite scopes too
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high. The element in the derivations to track is the extent of the scope of the
indefinite.

10.2. A derivation on which the indefinite scopes too low

To see why the simple lexical entries in (181) do not lead to an account of
donkey anaphora out of DP, we must first provide an analysis of the nominal
farmer who owns a donkey, starting with the relative clause:

(182)

DP)S S
DP

ly.[ ]
y

0

BBBB@

S S
(DP\S)/DP

owns
[ ]

owns

0

BBBB@

S S
DP

�
N

a

lP.
9x.Px^ [ ]

x

N
donkey
donkey

1

CCCCA

1

CCCCA

DP)S S
S

owns a donkey
ly9x. (donkey x)^ [ ]

owns x y

Lower
)

DP)S
owns a donkey

ly. 9x. (donkey x)^ (owns x y)

Because the relative clause undergoes LOWERing, the scope of the indefinite ex-
tends only over the relative clause, and no farther. Combining this gapped clause
with a relative pronoun and a nominal, we have:

(183)
N

farmer
farmer

0

@
(N\N)/(DP)S)

whorel
lkQy.(Qy)^ (ky)

DP)S
owns a donkey

ly. 9x. (donkey x)^ (owns x y)

1

A

=
N

farmer who owns a donkey
ly. (farmer y)^9x. (donkey x)^ (owns x y)

This derivation combines immediately with the lexical value for every currently
under consideration, as given above in 181.

(184)

S S
DP

every farmer who owns a donkey
8y.
�
(farmer y)^9x. (donkey x)^ (owns x y)

�
! [ ]

y
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Given the treatment of binding developed in previous chapters, the only element
available to serve as a binder is the farmer participant. This derivation does not
lead to any obvious bad predictions. However, there is no way to apply the BIND
type-shifter that would allow the donkey DP to bind a pronoun outside of the
nominal, which means that this derivation will not lead to an account of donkey
anaphora.

10.3. A derivation on which the indefinite scopes too high

There is a different derivation on which the indefinite takes wider scope—but
the scope is so wide it outscopes the universal, which, though grammatical, is not
the donkey anaphoric reading. This derivation is similar to the derivation of the
nominal given in the preceding section, except that the indefinite a donkey has
undergone shifting by the BIND typeshifter before combining with the rest of the
relative clause:

(185)

S DPBS
N

farmer who owns a donkey
9y. (donkey y)^ ([ ] y)

l z. (farmer z)^ (owns y z)

Exercise 26: Give details for this derivation.
If we combine this analysis of the nominal with (a LIFTed version of) the value

for every given in (181), we get the following.

(186)

S S
S S
DP

�
N

every
[ ]

lP.
8x.Px ! [ ]

x

S DPBS
N

farmer who owns a donkey
9y. (donkey y)^ ([ ] y)

l z. (farmer z)^ (owns y z)

=

S DPBS
S S

DP
every farmer who owns a donkey

9y. (donkey y)^ ([ ] y)
8x.((farmer x)^ (owns y x))! [ ]

x



In
Pres

s
10.4. EXPLICITLY MANAGING SIDE EFFECTS 113

On this analysis, the indefinite does take wide enough scope to bind a pronoun
outside of the relative clause, but only by taking scope wider than the universal.
Then Every farmer who owns a donkeyi beats iti would require the existence of
some special donkey (call it Pedro), such that every farmer who owns Pedro beats
Pedro. The sentence has such a reading, but this is not the classic donkey-anaphora
reading we seek to explain.

10.4. Explicitly managing side effects

We need to create enough flexibility in the denotation of every to allow an
indefinite to take scope beyond the relative clause, yet still below the universal.
We will explore how to do this by explicitly managing the transmission of side-
effects from the restriction to the nuclear scope of the universal.

(187)

S DPBS
DP

�
S DPBS

N
every

¬9x.g[ly.Px^¬([ ]y)]
x

�
g[ ]
P

In order to make the intention of the semantic analysis clear (since the seman-
tics somewhat abuses the official tower notation), the value in flat notation is
lPk.¬9x.P(lPy.Px^¬(kxy)).

The idea of this lexical entry is to propagate a binding side effect from the
restriction to the nuclear scope “by hand”, that is, by explicitly mentioning them
in the lexical entry.

Here’s how this lexical entry accounts for a basic donkey anaphora example.
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(188)0

BBBB@

S DPBS
DP

�
S DPBS

N
every

¬9x.g[ly.Px^¬([ ]y)]
x

�
g[ ]
P

S DPBS
N

farmer who owns a donkey
9y. (donkey y)^ ([ ] y)

l z. (farmer z)^ (owns y z)

1

CCCCA

DPBS S
DP\S

beats it
l z.[ ]

beats z

=

S DPBS
DP

every farmer who owns a donkey
¬9x.9y (donkey y)^ (farmer x)^ (owns y x)^¬([ ] y)

x

DPBS S
DP\S

beats it
l z.[ ]

beats z

=

S S
S

every farmer who owns a donkey beats it
¬9x.9y (donkey y)^ (farmer x)^ (owns y x)^¬(l z.[ ] y)

beats z x

The net result is that there is no way of choosing a farmer and a donkey such that
if the farmer owns that donkey, then the farmer fails to beat that donkey. This is a
reasonable approximation of the truth conditions of the donkey anaphora reading
of the sentence.

Despite being embedded in a relative clause, the indefinite takes scope over the
entire sentence, including the verb phrase, at the same time that it takes narrower
scope than the universal introduced by every.

Exercise 27: Devise a lexical entry for every that handles
more than one binding relationship originating inside the re-
striction and terminating inside the nuclear scope, e.g., Ev-
ery farmer who owns a donkeyi and a mule j keeps pictures
of himi and her j in his wallet.

10.5. Crossover for relative clause donkey anaphora

Now that we have a provisional analysis of donkey anaphora out of DP, we
can return to the main theme of Part I of this book: evaluation order and its effect
on binding. (We will return to a discussion of the analysis of determiners in the
next section.) Just as for donkey anaphora from conditionals, donkey anaphora
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from inside DP’s confirm the by now familiar pattern.
(189) a. Every farmeri who owns a donkey beats iti.

b. *Iti loves every farmer who owns a donkeyi.
c. *Itsi veterinarian loves every farmer who owns a donkeyi.
d. John photographed every farmer who owns a donkeyi with iti.
e. *John photographed iti with every farmer who owns a donkeyi.
f. Which of itsi habits does no farmer who owns a donkeyi hate?
g. ?Which of itsi habits enrages no farmer who owns a donkeyi?

These examples are marked as predicted by our theory of binding and recon-
struction developed in previous chapters, and the predictions match native-speaker
judgments, as well as, e.g., Büring (2004). Certainly, when the donkey pronoun
follows the donkey antecedent in an ordinary transitive sentence, donkey anaphora
goes through. When the pronoun precedes the donkey antecedent, crossover ef-
fects emerge. Just as with ordinary quantificational binding, donkey binding is
rescued by wh-fronting as in (189f), unless the wh-trace is evaluated before the
donkey antecedent as in (189g).

10.6. A scope-roofing constraint

The fragment in Barker and Shan (2008) considers a different strategy for
allowing side effects in the restriction to influence the interpretation of the nuclear
scope. That paper gives the following lexical entry for every, which we’ll call
every0:

(190)

S S
S S
DP

�
N

every0
¬9x.[ ]

lP.
Px^¬[ ]

x

This lexical entry has the advantage of allowing any number of side effects from
the restriction to extend into the nuclear scope. However, Charlow (2014) identi-
fies a number of overgeneration problems created by the variant lexical entry.

First, it allows violations of a roofing constraint proposed by Brasoveanu and
Farkas (2011). Roofing concerns the interaction of scope-taking with binding.
Descriptively, the roofing constraint says that if a quantifier binds a pronoun con-
tained in some DP, the quantifier must take scope over the entire DP.
(191) a. Some girli gave heri picture to [every boy].

b. Some girli gave [every boy] heri picture.
c. Some girli gave a picture to [every boy who met heri].
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In the first two examples, either one of the indefinite or the universal can take
wide scope relative to the other, whether or not the indefinite binds the pronoun as
indicated by the subscripts. But in (191c), the roofing constraint correctly predicts
that if the indefinite some girl binds the pronoun her, the indefinite must take
scope over the entire bracketed DP.

Exercise 28: Using (181), derive the grammatical interpre-
tation of Someone called every boy who met her.

Roofing falls out fairly naturally on a QR account: in order for the universal to
take scope over the indefinite, the universal must undergo QR to a position that c-
commands the indefinite. Because the entire DP undergoes QR, the pronoun goes
along with it. After QR, the pronoun is no longer c-commanded by the indefinite,
and there is no way to give that LF an interpretation on which the pronoun is
bound by the lower quantifier.

As Charlow (2010) shows, the variant lexical entry every0 allows the roofing
constraint to be violated.

(192)

S S
S DPBS

S S
DP

a girl
[ ]

9y.(girl y)^ ([ ] y)

[ ]

y

0

BBBBBBBBBBBBBB@

S S
DPBS DPBS

S S
(DP\S)/DP

called
[ ]

[ ]

[ ]

called
0

BBBBBBBBBBBBBB@

S S

DPBS DPBS
S S
DP

�
N

every0
¬9x.[ ]

[ ]

lP.
Px^¬[ ]

x

S S

DPBS S
N

boy who met her
[ ]

l z.[ ]
lx.boy x^ (met z x)

1

CCCCCCCCCCCCCCA

1

CCCCCCCCCCCCCCA

The truth conditions after LOWERing and beta reduction are ¬9x.9y.girl y^(boyx)^
(met x y)^¬(called x y). In words: there is no way of choosing a boy and a girl
such that the boy met the girl unless the girl called the boy. If such a reading is
available, it is remote.
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Assuming for the sake of argument that the roofing constraint should be a
matter of grammar, let us consider what options are available in the tower system.
Note that in the derivation of the undesired interpretation, the universal lifts to take
inverse scope over the indefinite, and the indefinite then binds the pronoun inside
the DP headed by every0. One perspective on what is going wrong here involves
the timing of restricted quantification. We can rephrase the roofing constraint in
evaluation-order terms as follows: no part of the nuclear scope can be evaluated
after the determiner but before any part of the restriction. The derivation just
given violates this constraint, since the pronoun inside of the restriction depends
(via binding) on the indefinite for its value, and the indefinite depends (via nar-
rower scope) on the universal. Thus the indefinite (part of the nuclear scope) must
be evaluated after the determiner, but before the pronoun. One diagnosis of the
problem, then, is that the evaluation order timing of the quantificational elements
is out of sync.

The official (non-variant) lexical entry for every given in (187) enforces roof-
ing. It does this by placing the quantification introduced by every behind a solid
slash that leans over the entire restriction. The slash blocks effects from earlier
in the sentence from sneaking underneath the layer at which the universal takes
effect.

The general pattern, fully respected by the official (non-variant) strategy given
here, is that no element outside of the DP can take scope over any part of the DP
without taking scope over the entire DP.

Barker and Shan (2008) give a schematic lexical entry similar to every0 making
use of what they call ‘frege pairs’, which generalizes to arbitrary (conservative)
quantificational determiners. Since we are not going down the path suggested by
every0 here, we will not discuss frege pairs here.

10.7. A mystery concerning scope islands for universals

Charlow (2010) points out that the analysis in Barker and Shan (2008) over-
generates in certain cases involving a universal inside a nominal restriction. The
official analysis given here overgenerates in the same way:

(193)

0

BBBB@

S DPBS
DP

�
S DPBS

N
a

9x.g[ly.Px^ ([ ]y)]
x

�
g[ ]
P

S DPBS
N

f’mer who owns every d’ey
8y. (donkey y)! ([ ] y)

l z. (farmer z)^ (owns y z)

1

CCCCA

DPBS S
DP\S

beats it
l z.[ ]

beats z

This derivation is exactly parallel to the derivation of the donkey anaphora given
in (188), but with the roles of the indefinite and the universal reversed. The truth
conditions require that there be a farmer who owns every donkey, and that this
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farmer beats each of his or her donkeys. As Charlow points out, the sentence
cannot express those truth conditions, so the grammar as given overgenerates.

Now, of course, we assume that distributive quantifiers such as every, each
and no cannot take scope outside of their minimal tensed clause. That means
that the scope of the universal in (193) must be trapped inside of the relative
clause, and the derivation just sketched does not respect this constraint. Once
the independently-motivated restriction on the scope of distributive quantifiers has
been implemented, the problematic derivation sketched in (193) will also be cor-
rectly ruled out.

Interestingly, as Charlow notes, that can’t be the entire story, since the same
problem arises when the universal is in a prepositional complement rather than
within a relative clause:

(194) A member of every committeei hates iti.

We can’t assume that prepositional phrases are scope islands for every in general,
because there is a perfectly legitimate inverse-linking reading of (194) on which
every takes wide scope over a. Thus it appears to be possible for every in this
kind of construction to take scope over the entire sentence. If so, then an analysis
along the lines of (193) will incorrectly predict truth conditions on which a single
person who is on every committee hates each individual committee.

Nevertheless, we suggest that this problem still has to do purely with scope
constraints, and does not teach us anything specifically about binding or crossover.
The reason we believe this is that the same restriction governs the scope interaction
of every with quantifiers in the verb phrase:

(195) A member of every committee missed a meeting.

Once again, an inverse-linking interpretation is perfectly fine: a different mem-
ber of each committee missed a potentially different meeting in each case. But if
the first indefinite takes scope over the universal (a non-inverse linking interpre-
tation), that is, if the interpretation entails that there is a single person who is on
every committee, it guarantees only that there was (at least) one meeting that was
missed. There is no reading on which the meeting involved (potentially) varies
with the choice of committee. This suggests that when the member indefinite
takes scope over the universal, the scope of the universal gets trapped somehow
inside its containing DP.

In any case, if a quantifier can’t take scope over a pronoun, it certainly can’t
bind it. So if we had a way of guaranteeing the scope restriction just observed, the
fact that donkey anaphora is likewise unavailable would follow for free.

One common assumption since May (1977) is that DP is a scope island. Then
the universal in (194) is always trapped inside its containing DP. This explains
why an embedded universal can’t take scope over or bind elements outside the
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container. However, it then becomes necessary to adopt extra semantic mecha-
nisms, such as situations and E-type meanings, in order to explain how the inverse-
linking reading arises. See especially Elbourne (2006) and Büring (2004) for pro-
posals, and Heim and Kratzer (1998), Sauerland (2005), Charlow (2009), Barker
(2005), Barker and Shan (2008), and Elbourne (2009) for critical discussion.

To be sure, as mentioned in the previous chapter, there remain puzzles con-
cerning how to implement constraints on the possible scope domains for distribu-
tive quantifiers; but assuming these constraints can be managed correctly, the bind-
ing facts follow. Here is our promise: if the scope constraints on quantifiers are
respected, the binding possibilities fall out from evaluation order.
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Other combinatory categorial frameworks

This chapter discusses two other combinatory categorial approaches to natural
language semantics: Jacobson’s Variable Free Semantics, and Steedman’s scope
as surface constituency.

The tower system is highly compatible with the assumptions and many of the
details of Jacobson (1999, 2002), though the two systems are not equivalent, par-
ticularly with respect to their approaches to scope, crossover, and reconstruction.

Steedman (2000) and the elaborations in Steedman (2012) gives type-shifters
for scope and binding. Like this book, Steedman (2012) is a complete reconceptu-
alization of scope, with a detailed and explicit formal implementation. Although
we enthusiastically endorse the project undertaken in Steedman (2012), and al-
though many of the claims about scope in Steedman (2000) and later work have
influenced our thinking, we disagree on the core data that we believe needs to be
accounted for by an adequate theory of scope, as explained below.

11.1. Jacobson’s Variable-Free program

As noted (e.g., in chapter 2), there are many points of similarity between our
framework and the variable-free program of Jacobson (1999, 2002). One of the
most salient elements in common is that our gaps and pronouns, as in Jacobson,
are various syntactic flavors of the identity function.

More in general, our approach embodies several of the guiding principles of
Jacobson’s research program:

Direct compositionality: every syntactic constituent must have a
well-formed and self-contained semantic interpretation.

Compositional transparency: the presence of unresolved seman-
tic dependencies (e.g., unbound pronouns, gaps) must be reflected
in the category of the larger constituents that contain the depen-
dency.

Variable-free: meanings are constructed entirely from combina-
tors, without any essential use of variables.

These three ideas are related, but not equivalent.
The deepest and most important principle is direct compositionality (see Ja-

cobson (1999, 2002), Barker and Jacobson (2007)). This principle says that any
121
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well-formed syntactic constituent is a well-formed semantic constituent. For an
example of a system that is not directly compositional, consider Quantifier Raising
as in the standard presentation in Heim and Kratzer (1998): in a quantified sen-
tence such as John called everyone, the verb phrase called everyone does not have
a denotation that reflects the full semantic contribution of its parts. Before Quan-
tifier Raising takes place, there is type clash between the individual-expecting
transitive verb and the generalized quantifier direct object; that means there is
no well-formed semantic value. After Quantifier Raising, the quantifier has been
raised to a position adjoining to the entire sentence, well outside the verb phrase.
The verb phrase at this point contains a variable in the place of the quantifier. The
verb phrase has a well-formed semantic interpretation, but not one that reflects the
full semantic contribution of its parts, since the contribution of the quantifier is no
longer present.

In the tower system, direct compositionality is guaranteed by the fact that ev-
ery syntactic constituent (represented here as giant parentheses grouping syntac-
tic elements into a tree) always has a single category and a single semantic value.
Furthermore, that value represents exactly the full semantic contribution of all and
only those semantic elements it was built up from.

Closely related to direct compositionality, compositional transparency is a
commitment to track the presence of semantic elements that have long-distance
effects, such as quantifiers or pronouns. For instance, in Jacobson’s system, as in
ours, if a sentence contains an unbound pronoun, then the syntactic category of
that sentence will be DPBS rather than plain S, since it denotes a function from
individuals to sentence meanings rather than a plain sentence meaning.

It is important to emphasize that the fact that we, like Jacobson, routinely
use lambdas in our semantic representations does not mean that the system isn’t
fully variable-free in the relevant technical sense. To see this, note that for every
syntactic constituent in any of the analyses in Part I, the semantic denotation is a
combinator, that is, a term containing no unbound variables.

In addition to being variable-free, the tower system in Part I is also composi-
tionally transparent and directly compositional.

11.2. Jacobson’s lgz fragment

To give a more detailed comparison with Jacobson’s concrete implementa-
tion of her approach, Jacobson relies on three families of combinators. The first,
l (‘lift’) corresponds closely to our LIFT. The only difference comes from the
fact that Jacobson’s grammar does not distinguish between the part of a syntactic
category that determines function/argument combination versus higher levels that
manage scope-taking and binding. On the type-logical approach developed in Part
II, lifting is a theorem in both the merge mode and the continuation mode. It does
no harm to add Jacobson’s merge-mode lift to the tower system if desired.
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The second crucial combinator family is the Geach combinator g. In a typi-
cal situation, this rule transmits a pronominal dependence from an argument to
the phrase that contains it. So if f : DP\S is a verb phrase expecting a sub-
ject, (lgx. f (gx)) : (DPBDP)\(DPB S) is the geached verb phrase (expressed
in our category notation). Assuming that the pronoun he is the identity function
(lx.x) : DPBDP, the geached analysis predicts the sentence He left will be an-
alyzed as (lx.left x) : DPBS: variable-free and directly compositional, with full
compositional transparency. In the tower system, the geach rule is built into the
semantic composition schema. Examination of the derivation of He left in (28) in
chapter 2 will show how the tower system achieves an equivalent result.

Finally, the third family of combinators, the binding combinator z, shifts a
predicate in a way that allows one of its arguments to bind into one of its other
arguments. Unlike in the tower system, the z type-shifter shifts the predicate, not
the argument that will serve as the binder.

The lgz fragment does not address quantifier scope. Barker (2005) shows how
to add Hendriks’ Flexible Montague Grammar to the lgz fragment, discussing var-
ious strategies for accounting for binding from a non-c-commanding position, as
well as some simple crossover examples. Barker (2009) compares reconstruction
in the lgz fragment versus the tower system.

Exercise 29: • Explain why the geach rule is derivable in
the tower system. • Given a type-shifter that allows func-
tion composition (e.g., f : A/B ) (lgx. f (gx)) : ((A/C)/(B/
C))), sketch how to use the tower system to derive the dual-
binding interpretation of Everyone loves, but no one marries,
his mother, on which it is equivalent to ‘Everyonei loves hisi
mother, but no one j marries his j mother’. (This interpre-
tation is a challenge for Quantifier Raising approaches.) •
Derive a suitable meaning for a paycheck sentence such as
the bracketed part of John put his paycheck in the bank, but
[Mary spent it]. The desired interpretation is one on which
there must be some salient function f from people to pay-
checks such that Mary spent it means that Mary spent the
paycheck identified by f (Mary).

Stepping back, Jacobson’s Variable-Free program and our tower strategy are
closely similar in outlook, methodological philosophy, and many specific and
highly detailed analyses. The distinctive aspect of our approach that we would
like to emphasize is that making the role of continuations explicit enables us to
reason formally at a high theoretical level about the role of evaluation order in phe-
nomena such as scope-taking, dynamic anaphora, the linear scope bias, negative
polarity licensing, crossover, and reconstruction.
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11.3. Steedman’s scope as surface constituency

Steedman (2000) and especially Steedman (2012):110 offers a combinator-
based grammar that addresses quantifier scope and binding.

In order to sketch how the system works, we will explain how to derive the
two scopings of Everyone loves no one. Among the lexical entries generated by
Steedman’s system for everyone and for no one are the following:

(196) a. everyonea lk.8x.kx : S/(DP\S)
b. everyoneb lky8x.kxy : ((DP\S)/DP)\(DP\S)
c. no onec lk.¬9x.kx : (S/DP)\S
d. no oned lky.¬9x.kxy : ((DP\S)/DP)\(DP\S)

We have recast Steedman’s notation to conform to the Lambek/type-logical tradi-
tion, in order to match the convention used throughout this book. In particular, the
argument category always appear under the slash, no matter which way the slash
is facing, thus: ARG\FN and FN/ARG.

Given a verb loves of category (DP\S)/DP, and referring to the lexical entries
given in (196), we first choose version (a) of everyone and version (d) of no one.
This gives linear scope:

(197) everyonea:S/(DP\S)

loves:(DP\S)/DP no oned :((DP\S)/DP)\(DP\S)
<

loves no oned :DP\S
>

everyonea (loves no oned):S

The < and > inferences are function application, with the arrow pointing in the
direction of the argument. So the semantic value delivered by this derivation will
be

(198) everyonea(no oned loves) = 8x¬9y.loves y x

In order to arrive at inverse scope, Steedman provides a type-shifter for forward
function composition, B (Smullyan’s ‘Bluebird’), which allows composing the
subject with the verb before combining with the direct object:

(199)

everyonea:S/(DP\S) loves:(DP\S)/DP
> B

everyonea loves:S/DP no onec:(S/DP)\S
<

everyonea loves no onec:S

This derivation uses the same entry for everyone (namely, the (a) version), but
a different lexical entry for no one (the (c) version instead of the (d) version).
Semantically, the B inference corresponds to function composition:

(200) no onec(lx(everyonea(loves x))) = ¬9y8x.loves y x

Function composition is independently motivated by so-called non-constituent co-
ordination, as in Right Node Raising examples such as Ann described and Betty
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built the motorboat: function composition allows treating the strings Ann de-
scribed and Betty built as predicates with category S/DP. Although we believe
that limited access to function composition is necessary in order to account for
non-constituent coordination, unlike most combinatory categorial grammars, and
unlike many type-logical grammars, our tower system does not rely on function
composition. Function composition plays no role in any of the derivations in this
book outside of the current chapter.

Crucially, the order of syntactic combination differs across the two deriva-
tions: (everyone (loves no one)) for linear scope versus ((everyone loves) no one)
for inverse scope. The main hypothesis of Steedman (2000) and Steedman (2012)
is that inverse scope is only possible if function composition has rearranged the
normal syntactic constituency, along with corresponding changes in intonation
and information structure. This requires making a distinction between deep, func-
tion/argument constituency versus the constituent structure delivered by function
composition, which Steedman calls surface constituency. His main claim, then,
is that the nuclear scope of any scop-taker must form a surface constituent that is
adjacent to the scope-taker.

Steedman (2012) develops the implications of this hypothesis in depth. One
key additional assumption is an independent mechanism for the scoping of in-
definites involving Skolem functions. Apart from some discussion in chapter 10,
we have not addressed the differences between indefinites and other classes of
scope-takers in this book; see, e.g., Szabolcsi (2009), Barker (2014b) for general
discussion of the special status of indefinites, and Charlow (2014) for a discussion
of indefinites in the context of a continuation-based approach.

Crucially, on the surface-constituency view, the only way for a universal to
take scope is to be linearly adjacent to its nuclear scope.

(201) [[The man who builds] each clock] also repairs it.

That means, for instance, that the only way (201) can receive an inverse-linking
interpretation is if the inner bracketed string the man who builds can be derived as
a constituent. Given the typeshifter B, this is just function composition. One nice
prediction of this account is an explanation for how the universal is able to bind
a pronoun in the nuclear scope on the inverse linking reading, since the universal
is in a syntactic position high enough to (almost) c-command the pronoun. This
solves the problem that some QR approaches have binding from inverse linking
cases as discussed by, e.g., Heim and Kratzer (1998): 234–5.

In other words, Steedman denies that there is ever what we would consider
genuine in-situ scope-taking, that is, scope-taking in which the scope-taking ele-
ment is neither at the left edge nor the right edge of the continuation it is taking
scope over.

We believe (along with many others) that scope-takers do not need to be at
the edge of their nuclear scope. In addition to the many analyses of in-situ scope
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argued for above, we will offer here some examples of inverse linking that pose a
challenge for the surface-constituency approach.
(202) a. [Some student from each department who had failed] complained.

b. [The man who puts each clock into its velvet case] also repairs it.
c. See if the nursing home is willing to give you the names of [some of

each doctor’s other patients in the facility]
Native speakers report that these sentences can all receive an inverse-linking in-
terpretation. Steedman (2012):131 argues that in (202a) the relative clause who
had failed is appositive. This is unlikely to be a viable analysis for (202b): since
the locative into its velvet case is an obligatory argument of put, it must be part of
the relative clause.

Likewise, in the naturally-occurring example in (202c), the only way to get
the right set of names is to quantify over doctors, find their other patients, and
choose some as a subset. This requires the quantifier each doctor to take scope
over material that surrounds it both on the left and on the right. There is no way
to build the required nuclear scope into a surface unit using function composition.

In addition, anticipating Part II, we can see no way for any compositional ac-
count of the truth conditions of sentence-internal same to manage without proper
in-situ scope-taking of the quantificational licensors of same, including at least the
accounts in Barker (2007) and Brasoveanu (2011).

We conclude that at least some of the time, it is possible for a universal quan-
tifier to take in-situ scope from a properly non-edge position. If so, a grammar
that allows scope-taking only over surface constituents, even in the presence of
function composition, does not give a full account of scope-taking.
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Computational connections

In this chapter we address two of the more overtly computational aspects of
our project. First, we will consider order of evaluation from the point of view of
the pure lambda calculus, one of the original inspirations for our approach.

Second, we will provide some notes on a computational implementation of the
tower system, including a refactoring of the type-shifters into a group of operators
that provide a effective way to search for analyses.

12.1. Order of evaluation in the lambda calculus

In computer programming languages, order matters.

(203) a. x := x + 1

x := 1

print x

b. x := 1

x := x + 1

print x

These two blocks of pseudocode differ only in the order of the first two statements.
Nevertheless, the behavior of the two blocks will differ: the first will print the
number 1, and the second will print the number 2.

What we need in order to understand this difference is some way of represent-
ing the meaning of these blocks that encodes the difference in evaluation order.
The danger is that the language that we use to encode the difference will itself be
order-sensitive, in which case our analysis is in danger of being circular: how can
we make sure that the encoding language will be evaluated in the right way?

In order to make this problem concrete, consider representing code in the pure
lambda calculus. The lambda calculus is confluent, which means that no matter
which application you decided to reduce first, you can always eventually arrive
at the same result. Could the lambda calculus, then, serve as an order-neutral
representation of sequential computations?

The problem is that the pure lambda calculus is not completely order-neutral.
If a lambda form contains subterms that do not have a normal form, the order in
which we choose to reduce applications matters very much, as we will see shortly.

First, we need to be more explicit about when we will consider a lambda
term to have been fully evaluated. Following Plotkin (1975), we will classify the

127
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constructions of the lambda calculus into values and programs:

(204)

x Variable: value
(lxM) Abstract: value
(MN) Application: program

Here, x schematizes over variables, and M and N schematize over arbitrary lambda
terms. We will consider our job of evaluating an expression to be complete if the
reduced term is a value, that is, either a variable or a lambda abstract. But if the
term is an application, we must reduce it if possible, continuing until we have a
value.

Some terms cannot be reduced to a value:

(205) W = ((lx(xx))(lx(xx)))

Because this term is an application (i.e., is of the form (MN) where M = N =
lx.xx), it is a program, and not fully reduced. If we attempt to beta-reduce this
form, we get a “reduced” form that is identical to the original form (up to alpha-
betic variance). The result is itself an application, and therefore not fully reduced.
This is the simplest “infinite loop” in the pure lambda calculus.

Now we can construct a lambda term where order of reduction makes a big
difference. Let I be the identity function (lxx). Then

(206) (lxI)W = (lx(lxx)) ((lx(xx)) (lx(xx)))

This is an application, so we need to reduce. However, we have a term with the
form (M(NN)), and so have two choices for what to reduce: we can reduce the
leftmost (also, outermost) application first, resulting in (lxx), a value. Success!
Or we could start by reducing the rightmost (innermost) application, in which case
we might begin an endless series of profitless reductions, never getting closer to a
value.

Obviously, in this case, we want to start on the left. As long as we agree to
always reduce the leftmost application first, we can be sure that we will always
arrive at a value (that is, for any expression that reduces to a value).

But, just as in our discussion of crossover in natural language, we’d like to
make this policy of always working from left to right explicit and precise. Perhaps
we’d like to make it precise by encoding it in the form of a program. And since
the pure lambda calculus is Turing complete, we might naturally choose to encode
the reduction algorithm in the pure lambda calculus. But if we do this, then the
reduction algorithm will be expressed in a language whose semantic behavior, as
we have just seen, depends on evaluation order, and we’re right back where we
started.

What we are wishing for is an evaluation strategy for which the order of eval-
uation of the analyzed expression is independent of the evaluation order of lan-
guage in which the analysis is conducted. This is where continuations come in.
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We adopt the following strategy of Plotkin (1975): for any given term in the lan-
guage to be analyzed, we map it to a different term via some explicit mapping
strategy, then we reduce the expanded term. The maps that Plotkin studied are
known as Continuation-Passing Style (CPS) transforms, and they make explicit
use of continuations.

It turns out that a carefully-crafted CPS transform can faithfully simulate the
same series of reductions that the original term would undergo given a leftmost
reduction scheme (or rightmost reduction, or some more complicated regime).
Yet the transformed term itself will be completely insensitive to the reduction
strategy under which it is evaluated. The way the transform accomplishes this is
by creating a term in which there is always exactly one redex, i.e., exactly one
choice for which application to reduce next. It doesn’t matter whether we reduce
the leftmost redex, or the rightmost, since there is only one option. How this
works will become clear as we develop the discussion in more detail.

Here is the call-by-name (CBN) continuation passing style (CPS) transform
from Plotkin (1975):153. If f is some term in the pure lambda calculus, we’ll
write [f ] for the call-by-name CPS transform of f .

(207)

[x] = x
[lxM] = lk.k(lx[M])

[MN] = lk.[M](lm.m[N]k)

Thus [·] maps lambda terms into (more complex) lambda terms. For instance, the
mapping rules apply to our problematic term as follows:

(208)
[(lxI)W] = lk.[lxI](lm.m[W]k)

= lk.(lk.k(lx[I]))(lm.m[W]k)

Crucially, this transformed term encodes the computation expressed by the origi-
nal term in such a way that the the desired order of evaluation is explicitly encoded.
Since the transform is an abstract (it begins with “lk”), it’s already a value, so
we can’t evaluate the transformed expression directly. In order to see the encod-
ing unfold, we must apply this term to the trivial continuation, I, which triggers
the reduction process. As reduction proceeds, unlike in the original term, at each
stage there is exactly one possible reduction, so we can’t possibly make the wrong
choice:
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(209)

([(lxI)W]I) = ((lk.(lk.k(lx[I]))(lm.m[W]k))I)

= ((lk.k(lx[I]))(lm.m[W]I))

= ((lm.m[W]I)(lx[I]))

= (((lx[I])[W])I)
= (((lx[lxx])[W])I)
= (((lx(lk.k(lx[x])))[W])I)
= (((lx(lk.k(lxx)))[W])I)

= ((lk.k(lxx))I)

= (I(lxx))

= (lxx)

Some of these steps are beta reductions, and some are further unfolding of the
CPS transform ‘[·]’. For each reduction, we have underlined the only functor that
is ready to be applied to an argument. Note that the underlined lambda term is
always the leftmost functor. As the zipper of evaluation descends, there is at most
one application that is not hidden underneath an abstract (recall that since abstracts
are already values, we don’t perform reductions inside of an abstract). As a result,
at each step there is only one possible move. The CBN CPS transform forces us
to always reduce the leftmost application first, ignoring the inner structure of the
argument W.

Incidentally, the reason it makes sense to call this transform “call-by-name” is
that the argument (in this case, the argument is W) is passed to the functor uneval-
uated. In linguistic terms, it corresponds to a de dicto interpretation: if Lars wants
to marry a Norwegian, then the description “a Norwegian” is incorporated into the
description of his desire unevaluated, rather than first picking out a specific de re
individual (i.e., by evaluating the direct object, call-by-value) and then supplying
the individual to build the desired representation. (This analogy to the de dicto/de
re ambiguity is meant to spur intuition, and should not be taken too seriously in
its simplest form.)
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Exercise 30: Here is Plotkin’s call-by-value transform:
[x] = lk.kx

[lxM] = lk.k(lx[M])

[MN] = lk.[M](lm.[N](ln.mnk))
Show that this CPS transform forces evaluation of the argu-
ment first, guaranteeing the evaluation of (206) will result in
an infinite loop.

In order to see the family resemblance between Plotkin’s transforms and the
continuation-based system here, consider the semantic part of the combination
schema from (16):

(210)
g[ ]

f
·

h[ ]
x

!
g[h[ ]]
f (x)

Translated into flat notation, this is

(211) lk.g[k f ] ·lk.h[kx]) lk.g[h[k( f x)]]

The combinator that will produce this result given the left hand value and the
right hand value is C = lMNk.M(lm.N(ln.k(mn))). To see this, compare the
following to (210).

(212)
CMN = (lMNk.M(lm.N(ln.k(mn))))(lk.g[k f ])(lk.h[kx])

= lk.g[h[k( f x)]]

The final result is exactly the linear presentation of the semantics of the result
expression of the combination schema.

The details of C are not exactly the same as either Plotkin’s call-by-name
transform or his call-by-value transform. For one thing, Plotkin’s transform makes
the continuation variable k an argument (‘mnk’ in both transforms), but k is in
functor position for us (‘k(mn)’). Subtle differences in CPS transforms make for
significant differences in behavior; nevertheless, the resemblance should be clear.

The main point here is that, just as a CPS transform allows explicit control over
order of evaluation in the lambda calculus, so too does articulating an ordinary
categorial grammar into continuation layers allow control over order of evaluation
in our natural language fragment. And, just as Plotkin was able to reason about
evaluation order by transforming an order-sensitive term into an order-insensitive
version, so too are we able to reason about the processing order of composition
by transforming the natural language expression in question into an expression in
a semantic representation that is itself order-neutral.

The result is a theory in which a certain aspect of processing is represented
in terms of a competence grammar. In this sense, then, we treat crossover and
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other order effects simultaneously as processing defaults and as part of the com-
petence grammar that composes well-formed expressions. On this view, there is
no contradiction between being a matter of processing, and simultaneously being
a matter of linguistic competence, i.e., a matter of grammaticality.

12.2. Notes on a computational implementation

The tower system was designed to make it easy to construct derivations by
hand. Nevertheless, it is still useful to have a machine supply most of the details
of a derivation automatically. This enables quick checking of the soundness of
an analysis, and also helps find all alternative parses and interpretations for an
ambiguous string.

We will show how the pressures of building a practical implementation can
lead to an equivalent but different set of type-shifters. The differences will help
reveal how the combinators (lifting, lowering, combination, etc.) interact with one
another.

The main engineering pressure comes from the fact that the search space for
derivations is not bounded. For instance, since the input pattern for the LIFT type-
shifter is alway met, there is no limit to the number of times LIFT can be applied, so
there is no limit to the number of distinct derivations for any sentence generated by
a tower grammar. The challenge, then, is to figure out how to LIFT when needed,
without LIFTing ad infinitum.

Our strategy here is to compile the LIFTing operation into the combination
schema. The idea is that rather than LIFTing spontaneously, we will only LIFT
when motivated by the need to combine with a neighboring tower.

Given that there are multiple options for LIFTing, the possible ways of com-
bining any two expressions is a relation, not a function. Then let ‘)’ be a three
place relation between an expression in category A, an adjacent expression in cat-
egory B, and the combined expression C (written ‘A ·B ) C’, pronounced ‘an A
merged with a B forms a C’). Then we can replace the type-shifters given above
with the following combination rules:
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A/B ·B ) A (Slash)(213)
B ·B\A ) A (Backslash)(214)

If A ·B )C, then A ·
D E

B
)

D E
C

(LiftLeft)(215)

If A ·B )C, then
D E

A
·B )

D E
C

(LiftRight)(216)

If A ·B )C, then
D E

A
·

E F
B

)
D F

C
(Combination)(217)

If A ·B )
C S

S
, then A ·B )C (Lower)(218)

AF( B ·B ) A (Front)(219)

Exercise 31: Argue that an arbitrary pair of expressions will
generate a finite set of combined expressions. Special rea-
soning is required for the case of Lower.

In this presentation, because the combination schema governs just the top layer
of a pair of expressions, there is no need for more than one variant of the com-
bination schema (compare with section 1.3). There is also no need to distinguish
between simple lifting and internal lift (see the discussion in section 4.1).

The semantics of each of the schemata that don’t have side conditions (namely,
Slash, Backslash, and Front) will be a combinator which will first be applied to the
meaning of the left constituent, then to the meaning of the right. The semantics
of the Slash rule and the Front rule is simply the identity function, lx.x. The
semantics of the Backslash rule is the T combinator, lxy.yx, so that j:DP · left:DP\
S ) T j left:S, where T j left reduces to left j.

The semantics for the other rules depend also on the semantics associated with
their side condition. So their semantics will be a combinator that applies first to the
semantics of the expression mentioned in the side condition, then to the semantics
of the two expressions. The combinator for LiftLeft will be l zxyk.x(lx.k(zxy)),
for LiftRight will be l zxyk.y(ly.k(zxy)), and for the main Combination schema,
l zxyk.x(lx.y(ly.k(zxy))).

This derivation relation can be combined with standard chart parsing tech-
niques to build a practical parser. Starting with the lexical entries of each word,
for any two adjacent expressions L and R, add a new expression for each way
of combining L and R according to the relation defined above. A derivation is
complete if there is an expression whose category is S spanning the entire input
string.

A derivation of the linear scope reading of Someone saw everyone will illus-
trate:
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someone saw everyone S Lower Combination Backslash

someone (S//(DP\\S))

saw everyone (S//((DP\S)\\S)) LiftLeft Slash

saw ((DP\S)/DP)

everyone (S//(DP\\S))

Reading from the bottom up, the two-level direct object combines with the one-
level verb by means of the LiftLeft schema on the higher level and the Slash
schema on the lower level. The two-level verb phrase combines with the two-level
subject by means of the Combination schema on the higher level with the Back-
slash schema on the lower level, followed by Lowering the result. To get inverse
scope, the last step will follow the recipe Lower LiftLeft Lower LiftRight

Backlash, which says that the two-level someone takes narrow scope with re-
spect to the tower on the right (LiftLeft); that two-level tower combines with the
lower level of saw everyone by means of the LiftRight schema on the higher level
and Backslash on the lower level; and two applications of Lower complete the
derivation.

One of the remaining challenges for a parser is to manage gaps, which are
allowed to range over any category of the form A( A. In practice, a gap will only
be useful if it matches the needs of some other independently parsed constituent.
For instance, in the case of a fronted wh-phrase, the gap will mirror whatever
the fronted phrase requires. This means that we can deduce the structure of the
gap category we will need by looking at the wh-phrase. One practical technique
for building a system that infers appropriate categories for gaps and pronouns is
to allow variables as elements in categories, and then combine categories via a
unification algorithm. See section 17.10 for an effective and reasonably efficient
strategy for handling gaps in a continuation-based type-logical grammar.

Likewise, the BIND type-shifter can be applied an unbounded number of times.
However, it will only be useful to apply BIND if there is a corresponding occur-
rence of the B category connective elsewhere in the derivation to cancel the B
introduced by BIND.

Exercise 32: If the Combination rule in (217) were elim-
inated, binding and NPI licensing would no longer work.
(Why?) However, scope taking and scope ambiguity would
work. Convince yourself of this by sketching derivations of
at least some of the six readings of Someone gave everyone
nothing. If in addition the Lower rule is generalized to apply
to any matching categories, rather than to just matching S’s,
then binding is once again possible, but crossover violations
are generated. (Demonstrate.) What would it take to restore
an explanation for crossover to the modified grammar?



In
Pres

sPart 2

Logic: same and sluicing



In
Pres

s
The continuation-based tower framework explored in Part I is by no means the

only way to use continuations to gain insight into natural language. Continuations
are a perspective, a way of looking at composition. They can be incorporated into
a concrete system in many different ways. In fact, we suspect that considering
multiple different implementations of continuations is essential in triangulating
on the underlying concept. In accord with this belief, in this part of the book we
will develop a different continuation-based grammar, which we will call NLl . The
emphasis will not be on order effects, as it was in Part I, but rather, on phenomena
and explanations beyond the reach of the simple tower system.

Part I implemented continuations in a combinatory categorial grammar. The
approach in Part II is set in a different branch of the categorial tradition, namely,
type-logical grammar. Type-logical grammar stems from the work of Lambek
(1958), as developed in particular by Michael Moortgat and associates (see Moort-
gat (1997) for an overview). The main idea is to use a formal logic—a set of
formulas combined with inference rules—to reason about composition. Usually,
logics are used to reason about truth: from knowing that “There’s smoke” and
that “Where there is smoke, there’s fire”, it is valid to conclude that “There’s
fire”. Type-logical grammar reasons instead about composition: from knowing
that “John is a DP” and that “a DP followed by a verb phrase makes a sentence”,
it is valid to conclude that “John followed by a verb phrase makes a sentence”.

The most basic kind of categorial grammar (see Bar-Hillel (1953)) studies
function/argument combination, corresponding in the semantics to function ap-
plication. Lambek (1958) adds hypothetical reasoning, corresponding in the se-
mantics to lambda abstraction. In order to handle in-situ scope-taking, pursuing
ideas of Oehrle (1994), Muskens (2001), and de Groote (2002), we will enrich
the SYNTACTIC side of categorial grammar with a kind of lambda abstraction.
Although this requires adding an unusual structural inference rule, we show how
to factor it into more ordinary structural rules. (See chapter 17 for some of the
formal properties of the system.)

The resulting continuation-aware system differs from the tower system in the
first part of the book in ways both superficial and deep. One of the more striking
differences is that the type-shifters LIFT and LOWER are theorems in this system,
so there is no need to manage multiple levels of continuations. This makes the
type-logical system simpler in a certain respect. Of course, it was exactly the
rigid separation into layers that allowed control over evaluation order in Part I.
Part II not focus on issues of order, though we will suggest in the Afterword a
way that control over order of evaluation could be introduced into the type-logical
approach.

A second, related, difference is that the grammar here provides expressions
with access not only to their own continuation, but to a portion of their context
which is itself a continuation. That is, if an expression in category A)B is a B
missing an expression of category A, then an expression in category A)(B)C) is
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an expression missing two pieces, an A and a B. In the terms of Morrill, Fadda
and Valentı́n’s Discontinuous Lambek Grammar, this is the difference between
expressions containing a single point of discontinuity and expressions containing
multiple points of discontinuity. We will consider the relationship between our
system and Discontinuous Lambek Grammar in section 15.2.

So if Part I is about linear order, Part II is about higher order (types).
The main empirical application discussed here that makes essential use of

higher-order continuations will be the ‘parasitic scope’ analysis of sentence-internal
same developed by Barker (2007). Parasitic scope is discussed here in chapter 14.

Building on analyses of Morrill et al. (2011), we will extend the parasitic scope
technique to pronominal anaphora and verb phrase ellipsis in chapter 15.

The final major empirical case study concerns sluicing. Sluicing is the kind of
ellipsis involved in the sentence Someone left, but I don’t know who . In chapter
(16), building on work of Jäger (2001, 2005), we develop an account of sluicing.
Following Barker (2013), we propose that sluicing is anaphora to a continuation.
If so, this supports our hypothesis that explicitly recognizing continuations is an
essential part of a complete picture of natural language.

The analysis of sluicing does not require higher-order continuations. We could
have provided an analysis of sluicing in the tower-based grammar of Part I, given
the addition of an ad-hoc type shifter allowing continuations to serve as the value
passed by a binding operator. We discuss sluicing in this part of the book instead
for several reasons. For one thing, sluicing does not hinge on evaluation order in
any essential way, so it does not contribute to the order-based theme of the first
part of the book. Second, as a form of ellipsis, it is useful to compare the analysis
of sluicing with the parasitic-scope treatment of verb phrase ellipsis using higher-
order continuations given in chapter 15. Third, the type-logical setting allows us
to emphasize the logic of silent modifiers, a crucial component of the explanation
for sprouting (a certain class of sluicing examples such as John left, but I don’t
know when). Fourth, the type-logical setting also makes possible an analysis of
implicit-argument sluices (e.g., John ate, but I don’t know what ) in terms of
multiplicative conjunction (the tensor connective ‘⌦’).

A note on exercises: although type-logical grammars are conceptually elegant,
they are not particularly well-suited to working out derivations on paper or on a
blackboard. Because of this, we will not continue the tutorial aspect of the first
part of the book, so there won’t be any more suggested exercises.

Although we will mention connections with discussions in Part I from time to
time, it should be possible to read Part II independently from Part I.

The complete formal system is presented in the next chapter, chapter 13. An
equivalent grammar is given in chapter 17. These formal systems were first pre-
sented in Barker (2007).
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CHAPTER 13

NLl

We present NLl : the non-associative Lambek grammar NL, augmented with
l -abstraction in the syntax. Of course, plain Lambek grammars have l -abstraction
already, in their Curry-Howard labeling (i.e., in the semantic part of the grammar);
what is innovative here is that we will have lambda abstraction in the syntactic,
proof-theoretic part of the grammar. In effect, our syntactic lambda embodies the
idea that an expression in category A)B is a B missing an A somewhere (specific)
inside of it—that is, it is a B with an A syntactically abstracted from it.

This chapter introduces the formal system, and shows how it provides an anal-
ysis of simple in-situ scope-taking. The presentation will be relatively informal,
by the standards of type-logical grammar; chapter 17 contains additional formal
details. For a more complete discussion of type-logical grammar, see Moortgat
(1997) or Jäger (2005).

The following chapters will use the formal system to develop a parasitic-scope
analysis of same, a treatment of pronominal anaphora and verb phrase ellipsis, and
an analysis of sluicing.

Some of the formal properties of the system are discussed in chapter 17, in-
cluding a completeness result, conservativity over NL (the non-associative Lam-
bek grammar), and decidability (effective proof search for finding derivations).
These results will justify our claim that despite the introduction of syntactic lambda
abstraction, the logics studied in Part II are perfectly ordinary and well-behaved
substructural logics, and can be used with full confidence and without the slightest
reservation.

13.1. Categories

In a type-logical grammar, the role of syntactic categories are played by logical
formulas. In fact, the categories (formulas) of NLl are identical to the syntactic
categories developed in Part I in section 1.2, and their interpretation and behavior
are conceptually parallel.

More specifically, the set of syntactic categories used in Part II will contain
the same basic (atomic) categories as in Part I, namely, DP, S, and N. As in Part
I, if A and B are any categories, then A\B, A/B, A)B, A( B, and A ? B are also
(complex) categories. It will be convenient to use Q as an abbreviation for DP ? S,

139
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where DP ? S is the kind of question that asks for an individual.
Category examples:
Determiner phrase DP John
Verb phrase DP\S left
Clause S John left
Generalized quantifier S( (DP)S) everyone
Interrogative-embedding verb (DP\S)/Q know
Fronted wh-phrase Q/(DP)S) who

These categories match the categories used for these expression types in Part I
exactly.

13.2. Structures

In type-logical grammar, structures play the role of syntactic trees, as well as
the role of logical forms. The simplest structure is a syntactic category (a formula).
That is, the set of structures includes the set of syntactic categories. In addition, if
G and D are structures, then G ·D (‘G syntactically merged with D’) and G�D (‘G
taking scope over D’) are also structures.

Structures:
Determiner phrase DP John
Clause DP ·DP\S John left
Clause DP · ((DP\S)/DP ·DP) John saw Mary
Verb phrase (DP\S)/Q ·Q know who left

We will need to enlarge the set of structures below before we can provide concrete
examples of useful structures involving ‘�’, the structural punctuation for scope-
taking.

13.3. Logical rules

These rules are identical to the rules given in Moortgat (1997):129. They
constitute the logical core of a two-mode type-logical grammar:

Axiom
A ` A(220)

G ` A S[B] `C
\L

S[G ·A\B] `C

A ·G ` B
\R

G ` A\B

G ` A S[B] `C
/L

S[B/A ·G] `C

G ·A ` B
/R

G ` B/A

G ` A S[B] `C
)L

S[G�A)B] `C

A�G ` B
)R

G ` A)B

G ` A S[B] `C
( L

S[B( A�G] `C

G�A ` B
( R

G ` B( A
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Since these logical rules are completely standard, the logic NLl explored here
will differ from other more standard two-mode type-logical grammars only in the
choice of structural postulates.

In the terminology of type-logical grammar, solid slashes characterize one
mode of syntactic combination, which we will call the MERGE mode (as in the
syntactic merge operation), and the hollow slashes characterize a second mode,
which we will call the CONTINUATION mode. The solid slashes ‘\’ and ‘/’ are
the familiar slashes of categorial grammar, and have the same meaning they do
there. The hollow slashes ‘)’ and ‘( ’ are for reasoning about scope-taking, and,
as mentioned, they are essentially equivalent to the hollow slashes introduced in
Part I.

Just as we used contexts of the form g[ ] in the logical expressions used in the
semantics of Part I, here we will have syntactic (structural) contexts. In the rules
above, ‘S[D]’ is a structure S containing a particular occurrence of the structure D.
Then S[G] is a structure just like S except that the occurrence of D has been re-
placed by the structure G. For instance, if S = John · left, and D is the occurrence
of the structure left inside of S, then S[saw ·Mary] = John · (saw ·Mary). Thus
the bracket notation is a way to refer to structures and their subparts, and in par-
ticular to replace one substructure with another. This kind of substitution into a
context is the same plugging operation used in Part I as part of the semantics for
the tower notation, except that in Part I, holes and plugs were part of the seman-
tic representation language, and here they are part of the syntactic representation
language.

As the labels attached to the logical rules indicate, there are two types of in-
ference patterns: R inferences and L inferences. Here is an example of an R
inference:

DP ·VP ` S
\R

VP ` DP\S
In words, reading from top to bottom: if merging a DP with a VP is one way of
forming an S, then it follows that any expression in the category VP must also
be in the category DP\S. This rule captures the sense in which an expression in
category DP\S is the kind of expression that can be merged with a DP to its left
to form an S.

And here is an example of a L inference:

John ` DP S ` S
\L

John ·DP\S ` S

This rule has two premises. The first premise says that John is in category DP.
The second premise is trivial in this instance, and merely says that everything in
the category S is in the category S (as surely it must be). If both these premises
hold, the conclusion on the bottom line says that John must be the kind of thing
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that can be syntactically merged with an expression in the category DP\S in order
to form a complete S.

As for the other six logical rules, they differ only in whether the targeted ex-
pression appears on the left or the right of some other element, and whether we
are reasoning about merging (solid slashes) or scope-taking (hollow slashes).

13.4. Proofs as derivations

By chaining inferences together, we can analyze complex sentences:

(221) Mary ` DP

John ` DP
Axiom

S ` S
\L

John ·DP\S ` S
/L

John · ((DP\S)/DP ·Mary) ` S
LEX

John · (saw ·Mary) ` S

The \L inference at the top was just discussed. The bottom inference, labelled
LEX, simply substitutes the lexical item saw in the place of its syntactic category,
(DP\S)/DP.

A derivation is complete if the premises at the top of the proof consist entirely
of axioms (such as ‘S ` S’) or lexical assumptions (such as ‘Mary ` DP’).

A structure followed by ‘`’ and a category constitutes a sequent. Sequents can
be interpreted here as category judgments. For instance, the sequent ‘John · (saw ·
Mary) ` S’ asserts that the syntactic structure ‘John · (saw ·Mary)’ is a member of
the category S.

Since the derivation in (221) is complete, the final sequent is a theorem of the
logic. Once the inference rules of a logic are chosen, linguistic analysis consists
in assigning categories to lexical expressions. The goal is for every well-formed
expression in the fragment of the language under study to be a theorem of the
logic (and vice-versa).

13.5. Structures with holes (contexts)

The inferences and the derivations (proofs) discussed so far involve only the
merge mode. In order to use the categories and logical rules governing the con-
tinuation mode, we need to add a structural rule. In order to state this structural
rule, we will need to enlarge the set of structures (as promised above) to include
gapped structures: if S[D] is a structure, then so is la S[a], where a is a vari-
able taken from the set x, y, z, x1, x2, .... For instance, lx x, ly y, lx (x · left),
lx (John · (saw · x)), and lx ly (y · (saw · x)) are gapped structures.

Then we have the following structural inference rule:

(222) S[D]⌘ D�la S[a]
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In words: if a structure S contains within it a structure D, then D can take scope
over the rest of S, where ‘the rest of S’ is represented as the gapped structure
la S[a].

In a tangram diagram:

(223)

S[D] ⌘

D
� laS[a]

The postulate says that if D (the small grey triangle) is some structure embedded
within a larger structure S (the complete larger triangle), we can present these
components completely equivalently by articulating them into foreground and
background, plug and context, an expression and its continuation. Then D will
be the foregrounded expression, and its context (the clear notched triangle) will
be the continuation laS[a].

A technical point: the inference expressed by the structural postulate is only
valid in cases in which the variable instantiating a is distinct from all other vari-
ables in S. This restriction is not essential; there is a variable-free implementation
of the fragment in Barker (2007), which is also presented below in chapter 17.

This structural rule handles scope-taking of in-situ quantifiers, and, as we will
see in subsequent chapters, a number of other semantic phenomena, including
parasitic scope and sluicing.

An example will show how the rule handles simple in-situ scope-taking. If
we assume that everyone has the syntactic category S( (DP)S) (just as in Part I),
then we can give the following derivation to the sentence John saw everyone:

(224)

···
john · (saw ·DP) ` S

⌘
DP�lx (john · (saw · x)) ` S

)R
lx (john · (saw · x)) ` DP)S S ` S

( L
S( (DP)S)�lx (john · (saw · x)) ` S

LEX
everyone�lx (john · (saw · x)) ` S

⌘
john · (saw · everyone) ` S

Reading from the bottom to the top, the first step is to suppose that everyone might
take scope over the rest of the clause (second line from the bottom). This involves
applying the structural postulate in a way that selects everyone as the focussed
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substructure. That is, we choose S[D] = john · (saw · [everyone]). The struc-
tural equivalence delivers the second line from the bottom, since D � laS[a] =
everyone�lx(john · (saw · x)).

In order to complete the derivation, it is necessary to prove that “the rest of
the clause”, corresponding here to the gapped structure lx (john · (saw · x)), has
category DP)S. The derivation here omits some details, since the initial premise
is neither a lexical correspondence nor a tautology, but the remaining steps are
similar to the derivation of John saw Mary given above in (221).

In later derivations we will see that the structure S can itself be embedded
within an even larger context.

What does the structural rule say? On the one hand, it plays a role in the
grammar analogous to the role of Quantifier Raising. It is tempting to view the
inference at the bottom of the derivation in (224) as a movement operation simu-
lating Quantifier Raising. In fact, that is a legitimate way to understand an aspect
of what the postulate is doing, and intuitions about Quantifier Raising will often
be directly transferable to intuitions about applying the structural postulate, and
vice-versa.

However, it is not a complete understanding. Another important way to inter-
pret the postulate is that it says the two structures are logically equivalent. Unlike
Quantifier Raising, then, the structural postulate has no effect on semantic inter-
pretation; more technically, in terms of the model theory of the logic (the model of
the logic, not the model theory of the linguistic analysis; see chapter 17), the two
structures denote the same object. On this view, the structural postulate merely
makes explicit a shift in perspective, a shift in what the prover is considering to
be foreground and what background. This notion of a shifted perspective is devel-
oped further below in section 15.1.

13.6. Curry-Howard labeling (semantic interpretation)

One pleasant property of type-logical grammar is that the compositional semantics
is completely determined by the structure of the logical rules. That is, the com-
position of the elements of a linguistic structure follows automatically from the
logical operations that build them, according to a mapping known as the Curry-
Howard correspondence. In brief (once again, see or Moortgat (1997) or Jäger
(2005) for full details), Left inference rules (the ones marked ‘L’) have the seman-
tics of function application, Right rules (the ones marked ‘R’) have the semantics
of functional abstraction, and structural rules have no effect on the semantic label-
ing.

The Curry-Howard labeling of the inference rules is completely standard, ex-
actly as given by Moortgat (1997), section 3. We illustrate by giving examples of
labeled versions of the axiom rule, one L rule, and one R rule. Here, x : A means
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that x is the semantic label for the syntactic category (formula) A.

Axiom
x : A ` x : A

G ` x:A S[N:B] ` M:C
\L

S[G · f :(A\B)] ` M{N 7! f (x)}:C

x:A ·G ` N:B
\R

G ` (lxN):(A\B)

Here, ‘M{N 7! f (x)}’ means ‘the formula just like M, but with each occurrence
of N replaced by f (x)’. In the labeling for the Right rule, note that because A is
used to derive B, the label x of A will normally occur as part of the label N of B,
so that when lx is prefixed to N, the lambda will bind an occurrence of x.

The labelings of the other L and R rules are parallel; see Moortgat (1997)
section 3 for full details.

To see how these labeling rules interact to give a full semantic analysis, here
is the same proof given immediately above, but with semantic labels prefixed to
each syntactic category:

j:john · (saw:saw · y:DP) ` (saw y j):S
⌘

y:DP�lx(j:john · (saw:saw · x)) ` (saw y j):S
)R

lx(j:john · (saw:saw · x)) ` (ly.saw y j):DP)S p:S ` p:S
( L

Q:S( (DP)S)�lx(j:john · (saw:saw · x)) ` Q(ly.saw y j):S
LEX

everyone:everyone�lx(j:john · (saw:saw · x)) ` everyone(ly.saw y j):S
⌘

j:john · (saw:saw · everyone:everyone) ` everyone(ly.saw y j):S

Thus the semantic labeling automatically derives the compositional meaning from
the inferences. In particular, the conclusion (the bottom line) states that if the
semantic values of John, saw, and everyone are j, saw, and everyone, then the
semantic value of the sentence is everyone(ly.saw y j).

Although Curry-Howard labeling is simple and straightforward conceptually,
it is somewhat cumbersome visually, and the derivations below will include only
the syntactic categories.

One crucial aspect of NLl is that the structural rule does not affect semantic
labeling at all. To see this in the derivation above, compare the bottom line with
the line immediately above it: there is no change in any of the semantic labels.
This means that the structural operation that corresponds to Quantifier Raising in
some sense moves (raises) a substructure to a scope-taking position, but without
any effect on meaning. This seems paradoxical, but goes to the heart of the con-
tinuation strategy: semantically, a scope-taker combines with its nuclear scope
simply and directly, without mediation. It is only the syntax that is unfamiliar,



In
Pres

s
146 13. NLl

allowing the scope-taker (the functor) to syntactically appear within the surround-
ing nuclear scope (its argument). The structural rule captures scope-taking as a
syntactic operation without disturbing the straightforward semantic composition.

13.7. Quantifier scope ambiguity

NLl automatically accounts for the two different semantic interpretations of
an ambiguous sentence like Someone loves everyone. There are two classes of
derivations such that the members of one class have the linear scoping as their
semantic labeling, and the members of the other class have the inverse scoping.
Here are representative examples of each of the two classes of derivations:

DP · (loves ·DP) ` S
⌘

DP�lx(DP · (loves · x)) ` S
)R

lx(DP · (loves · x)) ` DP)S S ` S
( L

S( (DP)S)�lx(DP · (loves · x)) ` S
LEX

everyone�lx(DP · (loves · x)) ` S
⌘

DP · (loves · everyone) ` S
⌘

DP�lx(x · (loves · everyone)) ` S
)R

lx(x · (loves · everyone)) ` DP)S S ` S
( L

S( (DP)S)�lx(x · (loves · everyone)) ` S
LEX

someone�lx(x · (loves · everyone)) ` S
⌘

someone · (loves · everyone) ` S

The semantic labeling for this derivation is 9x8y.loves y x. In general, the scope-
taker that is focussed (i.e., targeted by the structural postulate) lower in the proof
takes wider scope.



In
Pres

s
13.7. QUANTIFIER SCOPE AMBIGUITY 147

DP · (loves ·DP) ` S
⌘

DP�lx(x · (loves ·DP)) ` S
)R

lx(x · (loves ·DP)) ` DP)S S ` S
( L

S( (DP)S)�lx(x · (loves ·DP)) ` S
LEX

someone�lx(x · (loves ·DP)) ` S
⌘

someone · (loves ·DP) ` S
⌘

DP�lx(someone · (loves · x)) ` S
)R

lx(someone · (loves · x)) ` DP)S S ` S
( L

S( (DP)S)�lx(someone · (loves · x)) ` S
LEX

everyone�lx(someone · (loves · x)) ` S
⌘

someone · (loves · everyone) ` S
In this case, the semantic labeling gives the universal wide scope: 8y9x.loves y x.

At this point, it should be clear that NLl provides an account of in-situ scope
taking that automatically accounts for scope ambiguity.
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CHAPTER 14

Parasitic scope for same

Adjectives such as same, different, incompatible, etc., pose a challenge for
compositional semantics.

(225) Everyone read the same books.

This sentence has at least two readings. On the sentence-external (deictic) reading,
there is some salient set of books such that everyone read those books. On the
reading of main interest here, the sentence-internal reading, it means something
roughly like ‘There is a unique maximal set of books such that everyone read
exactly that set’.

The problem is that on the sentence-internal reading, there is no adequate gen-
eralized quantifier meaning for the DP the same books, as discussed in Keenan
(1992) and Barker (2007)). We can try interpreting the same books as if it meant
exactly one set of books. But then this quantifier would have to take scope rela-
tive to everyone, and neither linear nor inverse scope gives the right result: if we
give everyone wide scope over the choice of a set of books, there will be a poten-
tially different set of books for each person. That does not match intuitions about
what (225) means at all, since there is no requirement that anyone read books in
common.

On the other hand, if we give everyone narrow scope with respect to the choice
of a set of books, we come much closer: the requirement is that everyone read at
least those books, but may have read other books in addition. But this strategy
does not generalize to other quantifiers, such as no, nor to presumably closely-
related adjectives, such as different:

(226) a. No one read the same books.
b. Everyone read different books.

We certainly do not want to interpret (226a) as saying that there is exactly one set
of books that no one read, since those truth conditions are far too easy to satisfy.
Likewise, choosing a single set of books before quantifying over readers does not
lead to even remotely adequate truth conditions for (226b).

In addition, the partitive examples discussed below in section 14.4 cause ad-
ditional problems for a generalized-quantifier analysis.

149
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Thus a generalized-quantifier analysis of the same books will not work. In-
stead, we will argue, following Barker (2007) that same is a scope-taking adjec-
tive.

14.1. Motivating a scope-taking analysis for same

Internal readings for same arise in a wide range of contexts. We can motivate
a quantificational scope-taking analysis of same by considering a context in which
same is embedded inside of a nominal:
(227) John met two [women with the same name].

On the irrelevant external deictic reading, the speaker may have a specific name
in mind. In contrast, on the internal reading of interest here, (227) will be true just
in case there is any name such that two women in the room have that name.

To emphasize the quantificational nature of these truth conditions, note that
a speaker might assert (227) on the basis of a mistaken belief that John met two
women named ‘Heddy’. But if, unbeknownst to the speaker, John met two women
named ‘Mary’, the sentence is nevertheless true, albeit accidentally from the point
of view of the speaker.

Given that same involves existential quantification, it will need to take scope.
As a starting point for a scope-taking analysis, note that same occupies the syn-
tactic position of an adjective. This means it will have a local syntactic category
suitable for a nominal modifier, N/N, which we will abbreviate as A. Semanti-
cally, it will contribute locally a function f of type (e! t) ! e! t that maps
nominal properties to subproperties. Given that f chooses among the set of names
in the example at hand, we need to quantify over possible f ’s in order to find a
function that selects a multi-woman name.

The next step is to decide what the quantifier takes scope over. It certainly
does not take scope over an entire clause, as shown by embedding the nominal in
question under a downward entailing operator.

(228) a. John didn’t meet two women with the same name.
b. 9 f .John didn’t meet two women with the f (name).

If we quantify over nominal modifiers at the level of the clause, we predict that
(228a) should have an interpretation on which it is true just in case there is some
way f of choosing a name such that John didn’t meet two women who have the
f (name). But those truth conditions are extremely easy to satisfy: the sentence
will incorrectly be predicted true as long as there is any name, no matter how rare,
such that John didn’t meet any women who have that name.

Instead, Barker (2007) suggests that same has category N( (A)N): something
that functions locally as an adjective (i.e., as a nominal modifier, where ‘A’ ab-
breviates N/N), takes scope over a nominal, and returns a (quantified) nominal as



In
Pres

s
14.2. PARASITIC SCOPE 151

a result. This lexical assignment gives the following analysis:

(229)

men · (with · (the · (A ·name))) ` N
⌘

A�lx(men · (with · (the · (x ·name)))) ` N
)R

lx(men · (with · (the · (x ·name)))) ` A)N N ` N
( L

N( (A)N)�lx(men · (with · (the · (x ·name)))) ` N
LEX

same�lx(men · (with · (the · (x ·name)))) ` N
⌘

men · (with · (the · (same ·name))) ` N

This is in-situ scope-taking of exactly the sort motivated in chapter 13 above;
compare this derivation with, e.g., (224). The crucial step is the first step (reading
from the bottom upwards), in which same takes scope over the enclosing nominal.

This analysis suggests the following denotation for same, where N abbreviates
the type of a nominal, e! t:

(230) a. type(same) = (N ! N)! N ! N
b. [[same]] = lF(N!N)!NlXe.9 fN!N8x < X : F f x

Inserting the denotation in (230b) into the Curry-Howard labeling of the derivation
just given, we have:

(231) a. [[two men with the same name]] =
b. two(lX .9 f8x < X : [with(the( f (name))) (men)] (x))
c. Objects X with cardinality 2 such that there is a modifier function f

such that each proper subpart of X has f (name).

Here, X is a variable of type e that ranges over sets of women. The result of same
taking scope over the nominal women with the name is a property of sets of
women where each member of that set share a name. The cardinal two restricts
these sets of equi-named women to those containing two women. When inserted
in the analysis for (227), the result is a requirement that there is a pair of women
such that there exists a name such that both members of the pair has that name.

The analysis of the scope-taking properties of this nominal use of same is
completely ordinary, except that instead of taking scope over a clause of category
S the way that typical quantifiers do, it takes scope over a nominal of category N.

The proposed lexical entry would work unmodified in the tower grammar de-
veloped in Part I. But same has other uses in which it requires more expressive
power than the tower grammar is able to provide, as explored in the next section.

14.2. Parasitic scope

With a quantificational and scope-taking analysis of one use of internal same
in place, we can consider generalizing the approach to other cases.
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One important clue to the special nature of same is that the internal reading
depends on the presence of other scope-taking elements elements elsewhere in the
sentence.
(232) a. John read the same book.

b. Everyone read the same book.

The second sentence, in (232b), has a sentence-internal interpretation that (232a)
lacks. It seems clear that the availability of the additional reading has something
to do with the presence of the quantifier everyone. We will provide an analysis on
which the scope of same depends on the scope of everyone in a certain way that
Barker (2007) calls parasitic scope.

The syntactic category given for nominal same will not work without modifi-
cation, since there is no suitable N node in view for same to take scope over. How-
ever, if we look instead for an expression with the same semantic type, namely,
e! t, a scope target emerges as the derivation unfolds:

(233)

lx(x · (read · (the · (same ·book)))) ` DP)S S ` S
( L

S( (DP)S)�lx(x · (read · (the · (same ·book)))) ` S
l

S( (DP)S) · (read · (the · (same ·book))) ` S
LEX

everyone · (read · (the · (same ·book))) ` S
Reading the proof from the bottom up, everyone takes scope over the sentence,
creating a scope remnant (lx(x ·(read ·(the ·(same ·book))))) with category DP)S.
This structure is the nuclear scope of everyone, and has the desired semantic type,
e! t.

If we assume that in addition to the category N( (A)N) assigned to same
above, it is also in category (DP)S)( (A)(DP)S)), we can continue the deriva-
tion as follows, with no adjustment needed in the semantic value for same pro-
posed in the previous section:

(234)

DP · (read · (the · (A ·book))) ` S
l

DP�lx(x · (read · (the · (A ·book)))) ` S
)R

lx(x · (read · (the · (A ·book)))) ` DP)S
l

A�lylx(x · (read · (the · (y ·book)))) ` DP)S
)R

lylx(x · (read · (the · (y ·book)))) ` A)(DP)S) DP)S ` DP)S
( L

(DP)S)( (A)(DP)S))�lylx(x · (read · (the · (y ·book)))) ` DP)S
l

lx(x · (read · (the · ((DP)S)( (A)(DP)S)) ·book)))) ` DP)S
LEX

lx(x · (read · (the · (same ·book)))) ` DP)S
Here, as above, ‘A’ is the category of an adjectival nominal modifier, and abbre-

viates N/N.
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The Curry-Howard labelling is completely standard, and we have:

(235) everyone(same(l f ly.read(the( f (book))) y))

The reason it makes sense to call this strategy parasitic scope is because same
takes scope in between the scope-taking element everyone and its nuclear scope.
The scope target for same isn’t even present until some other element (in this
case, everyone) has taken its scope. In that sense, then, the scope-taking of same
is parasitic on the scope-taking of some other element in the sentence.

Parasitic scope goes beyond the expressive power available to the tower sys-
tem. The reason is that the tower system assumes that each continuation has
exactly one missing piece; as discussed below in section 15.1, parasitic scope
requires continuations that are missing two pieces.

14.3. Pervasive scope-taking

One consequence of adopting the parasitic scope strategy is that everything
that is able to serve as the trigger for the internal reading of same must be able to
take scope, since that is the only way to create the scope host required for parasitic
same. For overtly scope-taking triggers such as everyone, that is unproblematic.
But there are other DP types that are not obviously scope-taking that nevertheless
trigger internal readings for same, including coordinated DPs and definite plural
DPs.
(236) a. Ann and Bill read the same book.

b. The men read the same book.

In order for a parasitic scope analysis to go through, it is necessary to assume that
Ann and Bill and the men are able to take scope.

In the context of a combinatory categorial grammar, this would mean assum-
ing the availability of a freely available LIFT operation, as in the tower grammar
of Part I. Of course, LIFT was required independently, for instance, in order for a
non-quantificational DP to coordinate with a generalized quantifier (e.g., Ann and
every student). Furthermore, it is harmless to allow a plain DP to shift to a scope-
taking generalized quantifier, since the semantics of the type shift guarantees that
the truth conditions remain unchanged in the shifted derivation.

But in any case, on the type logical grammar here, DP ` S( (DP)S) is a the-
orem, so there is no need to stipulate the availability of a LIFT type-shifter. This
means that lifting is always available as a matter of logic, though in the usual case,
it is a useless digression, since it makes no difference semantically. However, in
the presence of a scope-taker like same, the shift can serve as a catalyst to facilitate
parasitic scope-taking.

In fact, the required scope-taking is even more pervasive, since DP’s are by
no means the only expressions that can trigger an internal reading for same, as
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emphasized by Carlson (1987):
(237) a. John [read and reviewed] the same book.

b. John read the same book [quickly and thoroughly].
c. John read the same book [every day].
d. John [usually] read the same book.

Here, an internal reading is possible with conjoined verbs, conjoined adverbs, a
quantificational adverbial containing a DP quantifier, and a quantificational ad-
verb. It appears that same is unusually promiscuous syntactically, and cares only
about whether it has the right kind of object to distribute over. Because continua-
tions are available uniformly across all syntactic categories, the parasitic approach
generalizes smoothly to these cases, under certain assumptions about the mereol-
ogy of events and other types of objects; see Barker (2007) for details.

In general, the scope-taking mechanism allows same to target any element in
the clause, subject to the semantic constraint that that element provides a deno-
tation suitable for distributing over. This means that in contrast to the usual as-
sumption that scope-taking is restricted to a limited class of quantificational DPs,
if every expression has access to its continuation, then quite literally every expres-
sion can potentially take scope. In other words, on the view here, natural language
is seething with scope-taking.

14.4. Same in the presence of partitives: recursive scope

Solomon 2010 argues that the simple parasitic scope analysis just given does
not get uniqueness/maximality implications right. The point is especially com-
pelling when same occurs in the presence of partitivity:
(238) Anna and Bill know [some of the same people].

On the analysis of same described above, the predicted truth conditions require
that there is some set of people X such that Ann and Bill each know a subset of
X . But nothing prevents the two subsets from being disjoint, so that there might
be no one that Ann and Bill both know, contrary to intuitions about the meaning
of the sentence. According to native speakers, in order for (238) to be true, Ann
and Bill must have some acquaintances in common.

Solomon gives same the category ((DP)S)( (DP)(DP)S)))( (A)DP). It’s
easier to see what’s going on here if we present the category in the tower notation
developed in Part I:

(239) Recursive-scope same :
DP)S DP)S

DP
DP

A

Note that result category (top left corner of the tower) is itself a tower. On this
analysis, same sits in adjective position (A), taking scope over the DP some of
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the people; it then turns this host DP into a parasitic scope-taker that distributes
over the set containing Ann and Bill.

Solomon gives the following denotation for the recursive-scope same, leading
to an analysis for (238):

(240) a. lFRX .9Z8x < X .F(lgY.RY x^gy)(lW.W = Z)
b. (a�b)(same(l f .some-of(the( f (people))))(lyx.know y x))
c. 9Z8x<(a�b).some-of(the(lY.knowY x^peopleY ))(lW.W = Z)

Here, a�b is the mereological sum of Anna and Bill. The net truth conditions
require that there is a group Z such that for each x out of the set consisting of Anna
and Bill, Z constitutes some of the people that x knows, as desired.

On the recursive-scope analysis proposed by Solomon, then, same is an oper-
ator that turns its nuclear scope into a new, larger scope-taking expression. Note
that Solomon’s analysis still relies crucially on parasitic scope.

We find Solomon’s arguments compelling, and will assume that on the most
general analysis of same, it takes recursive, parasitic scope.

Section 16.9 on Andrews Amalgams gives a second example of a recursive-
scope analysis of a natural language expression type.

14.5. Other accounts of same

There are a number of insightful formal analyses of same. Some are not
strictly compositional (Stump (1982), Moltmann (1992)), in that they allow non-
adjacent quantifiers to interact before combining with intervening material, in the
style of polyadic quantifiers. Others are radically pragmatic (Dowty (1985), Beck
(2000)) in a way that Barker (2007) argues does not capture the crisp robust intu-
itions about the truth conditions of same.

Brasoveanu (2007, 2011) gives a fully compositional account on which the
connection between same and different is mediated by a process he calls associ-
ation with distributivity. See Bumford and Barker (2013) for a proposed refine-
ment of the association with distributivity analysis, including a brief comparison
with the parasitic approach presented here. Unlike the parasitic scope analysis, in
the association with distributivity analysis, all of the heavy lifting is done by the
distributive quantifier, which allows adjectives like same to express their seman-
tic restriction in the form of a simple, non-quantificational requirement on their
anaphoric referents.

On the one hand, association with distributivity makes a clean distinction be-
tween the behavior of singular different versus same and plural different:

(241) a. The men read a different book.
b. The men read the same book.
c. The men read different books.
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Unlike the examples with same and plural different in (241b) and (241c), singular
different in (241a) does not allow a sentence-internal reading. That is, in (241a),
each man must have read a book that is different from some salient book provided
by context.

On the other hand, the association-with-distributivity approach would require
considerable development in order to handle nominal cases like those discussed
above in section 14.1, as well as the coordinated verb examples such as (237a),
discussed in detail in Barker (2007), not to mention the partitive examples given
in the section above (though see optimistic remarks in Brasoveanu (2011)).

In addition to association-with-distributivity, there are promising composi-
tional analyses due to Solomon (2011) and Bumford (2013) based on constructing
what they call functional witnesses (Skolem functions). In addition to handling
many cases of same and different, functional witnesses are capable of describing
a wide range of challenging constructions:
(242) Everyone read a book. Then everyone read a different book.
This discourse has an interpretation on which each person is required to read two
different books, although there is no requirement that different people read dif-
ferent books from each other. We don’t extend our treatment to such examples
here.

Having motivated the technique of parasitic scope, the following chapter con-
siders a number of additional applications to natural language.
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Scope versus discontinuity: anaphora, VPE

Parasitic scope provides a compositional way for two elements that are not
contiguous to interact semantically. In the previous chapter, those two elements
were a quantificational adjective (e.g., same) and an independent trigger for the
adjective to distribute over, usually, a quantificational or plural DP. Despite the
fact that these elements were not adjacent to each other, and in fact did not even
need to stand in a c-command relation syntactically, the analysis was fully com-
positional.

NLl was motivated by a desire to provide an account of in-situ scope taking
that is expressive enough to handle parasitic scope analyses of same. But the
parasitic scope scope technique can be applied to a wide range of problems. This
chapter briefly considers parasitic scope analyses of pronoun binding and of verb
phrase ellipsis. We mention some other applications of parasitic scope in section
15.5.

The Discontinuous Lambek Grammar (Morrill et al. (2011), Valentı́n (2012))
is also a type-logical grammar, and also handles interaction of non-adjacent el-
ements. It takes a dramatically different perspective, treating expressions that
we analyze as higher-order continuations as discontinuous. It counts as a com-
positional grammar only if you are willing to consider expressions with an un-
bounded number of points of discontinuity as a syntactic constituent. We consider
how the two approaches—NLl and Discontinuous Lambek Grammar—illuminate
each other in section 15.2.

15.1. The tangram picture of parasitic scope

Here is a schematic diagram of parasitic scope:
157
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(243)

B A

A)(B)C)

The doubly-notched grey triangle is what we have been calling a higher-order con-
tinuation. It is something that would have been a C, except that it is missing not
one substructure, but two. If one of the notches were filled, the resulting complex
structure would still have a notch in it; that is, the result of the first combination
operation will be an ordinary continuation. That means that we can schematically
represent the category of the doubly-notched structure as A)(B)C): an expres-
sion in this category is ready to combine with a filler of category A. Once we fill
the A notch, the singly-notched result will be ready to combine with a filler of
category B, to form a complete C.

For instance, in the analysis of same given in the previous chapter, A = N/N
(the category of a adjectival nominal modifer), and B = DP. The scope-taking

adjective same has category
DP)S DP)S

N/N
. (We’re keeping things simple by

not implementing the recursive-scope refinement discussed in section 14.4.) Once
same has combined with its (doubly-notched) continuation—in the diagram above,
imagine pushing the triangle above the A into the notch directly above it—the re-
sult is a singly-notched continuation of category DP)S: just the right kind of thing
for a quantifier such as every to take scope over.

15.2. Discontinuous Lambek Grammar

Morrill et al. (2011) and Valentı́n (2012) present a type-logical grammar D
called Discontinuous Lambek Grammar. Though different from NLl in its histor-
ical development (see Morrill et al. (2011):11) and in form, the expressive power
and the specific analyses it provides are closely parallel to those of NLl . We view
the similarity as a case of two independent research efforts converging on a similar
solution. At the same time, the two formalisms are interestingly different in their
assumptions and their methods.

For instance, consider the grey doubly-notched triangle in the diagram in the
previous section. The continuation-based grammar NLl views this portion of a
linguistic tree as a unit: it is a constituent with two pieces excluded. All of its
parts are connected, so it is a contiguous, unitary constituent.
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The perspective of Discontinuous Lambek Grammar is quite different. Since
type-logical grammars model languages, and since languages can be viewed as
sets of strings, Morrill et al. focus their attention on the words that occupy the
leaves of the tree. Instead of considering the doubly-notched contiguous region
of the larger tree, they consider instead the words along the bottom edge. And
because there are two notches interrupting the bottom edge, the words in question
form a discontinuous string. For instance, in the sentence Mary claimed John
wanted everyone to read the same book, the discontinuous string corresponding
to the nuclear scope of same is John wanted ... to read the ... book. On the
continuation-based view, this is a single constituent with two pieces excluded; on
the Discontinuous Lambek Grammar view, it is a configuration consisting of three
separate parts.

The correspondence with NLl is easiest to see at the level of categories. Mor-
rill et al. define a type connective ‘"’ such that B " A means (roughly) “a discon-
tinuous expression that would be of category B if one of its gaps were filled with
an expression of category A”. This is functionally equivalent to our A)B (note the
reversal of the order of the subcategories). Likewise, they define a complementary
connective ‘#’ such that D #C means “an expression that would be of category C,
if only it were first substituted into a discontinuous expression of category D”,
which is functionally equivalent to our C( D. (Note again the reversal of the cat-
egories.) So their category for a generalized quantifier is ((S1 " DP) # S2), which
is equivalent to our S2( (DP)S1).

Discontinuous Lambek Grammar builds associativity directly into the logical
rules (see, e.g., Valentı́n (2012) section 3.3 for an explanation of how the structural
rules for associativity have been absorbed into the logical rules). As a result,
in order to regulate the combination of expressions which might differ in their
number of points of discontinuity, it is necessary to sort the expressions into a
hierarchy of classes, where each class corresponding to a different number of
discontinuities.

Morrill et al. are committed to the assumption that natural language is fully
associative: that the syntactic structure p · (q · r) will be well-formed if and only
if (p · q) · r is well-formed. Associativity is well-established as an assumption in
some varieties of categorial grammar. For instance, it is an essential part of the
program of Steedman’s scope as surface constituency, discussed above in section
11.3.

However, it is by no means clear that natural language is uniformly associa-
tive. Instead of building associativity into the basic definitions of the grammar, as
Morrill et al. do, a more conservative strategy would be to build a non-associative
grammar, and add associativity in a carefully regulated way, only where needed,
as explained in detail in Moortgat (1997).

Although Morrill et al. present associativity as an essential part of their en-
terprise, Moortgat (2012) comments that there does not appear to be any reason
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why Discontinuous Lambek Grammar could not be rebuilt without associativity,
so that it combined full tree structures instead of discontinuous strings. The details
of how this might be accomplished are not clear to us, however.

In the other direction, associativity can easily be added to NLl by adopting
a suitable structural postulate, if desired; see the discussion of (290) below in
chapter 17.

15.3. Pronominal binding as parasitic scope

Adapting the analysis of Morrill et al. (2011):52, we can use parasitic scope for
pronoun binding. Instead of adding a special type-shifter and a special meaning
for pronouns, as in Part I, the parasitic scope analysis allows pronouns to find a
binder purely by taking (parasitic) scope. This binding strategy will play a role in
the sketch of verb phrase ellipsis in the next section (section 15.4), as well as in
the analysis of sluicing below in chapter 16.

The idea is that a pronoun is a scope-taker (as in Part I), such that its scope
is parasitic on the scope of its binder. Assuming the pronoun he has category
(DP)S)( (DP)(DP)S)), we have:

(244) Everyonei said hei left.

DP · (said · (DP · left)) ` S
⌘

DP�lx(x · (said · (DP · left))) ` S
)R

lx(x · (said · (DP · left))) ` DP)S
⌘

DP�lylx(x · (said · (y · left))) ` DP)S
)R

lylx(x · (said · (y · left))) ` DP)(DP)S)

DP)S ` DP)S S ` S
( L

S( (DP)S)�DP)S ` S
LEX

everyone�DP)S ` S
( L

everyone� ((DP)S)( (DP)(DP)S))�lylx(x · (said · (y · left)))) ` S
LEX

everyone� (he�lylx(x · (said · (y · left))) ` S
⌘

everyone�lx(x · (said · (he · left))) ` S
⌘

everyone · (said · (he · left)) ` S
From the bottom upward, first the host scope-taker everyone takes scope. Then

the pronoun he takes parasitic scope just under everyone.
Giving he the semantics of the duplicator combinator W = lklx.kxx, and

assuming that the generalized quantifier everyone = lP8x.Px, the semantics for
the derivation is as follows:

(245)

everyone((lklx.kxx)(lylx.said(left x) y))
= everyone(lx.said(left x) x) = (lP8x.Px)(lx.said(left x) x)

= 8x.said(left x) x
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This derivation gives the bound reading, on which the pronoun varies with the
choice of the universal quantifier.

It will be convenient to adopt a convention in the remainder of this chapter
and in the next chapter for abbreviating the syntactic category that delivers bound
anaphora:

(246) AB ⌘ (B)S)( (A)(B)S))

This is the category of an anaphor of category A taking an antecedent of category
B. Usually (though not always; see Barker (2013), section 6.2), A and B will
match exactly (e.g., in the derivation above, A = B = DP).

Jäger (2005) points out that anaphora is a challenge for some of the cherished
assumptions of type-logical grammar. For instance, one of the central proper-
ties of Lambek grammars in general, like all so-called substructural logics (see
Restall (2000)), is that they are resource-sensitive: unlike logics that are used to
reason about truth, assumptions in a resource-sensitive logic cannot be duplicated
or omitted at will. Yet anaphora appears to require duplicating its antecedent. The
Morrill et al. analysis adopted here resolves this tension: in the logic, pronoun
binding makes use of each grammatical expression exactly once, so that there is
no compromise of the resource-sensitive discipline. The only duplication occurs
in the lexical semantics of the pronoun. In particular, there is no special logical
rule for anaphora, as in Jäger (2005). Instead, the duplication is accomplished
entirely within the lexical syntax and semantics of the pronoun, a strategy long
advocated by Szabolcsi (1992, 1989), Dowty (2007), and others.

15.4. Verb phrase ellipsis as parasitic scope

In anticipation of the next chapter on sluicing (a form of ellipsis), we will explore
another application of parasitic scope proposed by Morrill et al. involving verb
phrase ellipsis. We will not develop or defend this analysis of verb phrase ellipsis
in detail, but offer it for comparison with sluicing.

In verb phrase ellipsis (VPE), a verb phrase takes a nearby verb phrase as an-
tecedent. We can model this by providing a silent proform VPEGAP with category
VPVP (where ‘VP’ abbreviates DP\S):
(247) John left or Bill did.

left� (VPEGAP �lylx((John · x) · (or · (Bill · y)))) ` S
⌘

left�lx((John · x) · (or · (Bill ·VPEGAP))) ` S
⌘

(John · left) · (or · (Bill ·VPEGAP)) ` S
The VP proform takes the verb phrase left as its antecedent. The semantic value
of the VP gap is once again the duplicator combinator, the same as for pronoun
binding (though with different semantic types for the arguments). The net inter-
pretation is that John left or Bill left.



In
Pres

s
162 15. SCOPE VERSUS DISCONTINUITY: ANAPHORA, VPE

The VPE analysis and the analysis of bound pronouns given above interact to
provide analyses of the traditional strict versus sloppy ambiguity. To illustrate a
sloppy interpretation, simply replace the verb phrase left in the derivation above
with the following derivation of said he left in which the pronoun takes scope over
the rest of the verb phrase (i.e., covaries with the subject of the verb phrase):

(248) John said he left or Bill did.

DP� (he�lylx(x · (said · (y · left)))) ` S
⌘

DP�lx(x · (said · (he · left))) ` S
⌘

DP · (said · (he · left)) ` S
\R

said · (he · left) ` DP\S
The interpretation in this case is that John said John left or Bill said Bill left.

In order to arrive at the strict interpretation, it is necessary for the strict an-
tecedent (in this case, John) to take scope over the entire sentence, and in particu-
lar, to take wider scope than the the verb phrase ellipsis:

(249) John said he left or Bill did.

(DP · (said · (DP · left))) · (or · (Bill ·VPEGAP)) ` S
⌘,⌘

DP� (DP�lylx((x · (said · (y · left))) · (or · (Bill ·VPEGAP)))) ` S
)R,)R

lylx((x · (said · (y · left))) · (or · (Bill ·VPEGAP))) ` DP)(DP)S) John�DP)S ` S
( L

John� (he�lylx((x · (said · (y · left))) · (or · (Bill ·VPEGAP)))) ` S
⌘

John�lx((x · (said · (he · left))) · (or · (Bill ·VPEGAP))) ` S
⌘

(John · (said · (he · left))) · (or · (Bill ·VPEGAP)) ` S

The left branch of the derivation continues by using the VP corresponding to said ·
(DP · left) to bind VPEGAP. The interpretation is that John said John left or Bill
said John left.

Of course these examples are only the simplest, most basic type of verb phrase
ellipsis. We will not evaluate here how robust the Morrill et al. parasitic scope
strategy is for verb phrase ellipsis in general, though we’re currently not aware of
any fatal shortcomings.

15.5. Other parasitic scope analyses

Parasitic scope has been used to characterize a number of different phenom-
ena. Kennedy and Stanley 2009 propose a parasitic scope analysis for sentences
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like The average American has 2.3 kids, solving the puzzle posed by the fact that
no individual person can have a fractional number of kids.
(250) The average American has 2.3 kids.

2.3� (average�lylx(the · (y ·American))(has · (x ·kids))) ` S
⌘

2.3�lx(the · (average ·American))(has · (x ·kids)) ` S
⌘

(the · (average ·American))(has · (2.3 ·kids)) ` S
Starting from the bottom, the cardinal 2.3 takes scope, creating the right circum-
stance for average to take parasitic scope. Kennedy and Stanley provide details of
the denotation for the average operator that gives suitable truth conditions for this
analysis.

Parasitic scope analyses have also been proposed for various types of coordi-
nation in English and in Japanese (Kubota and Levine (2012), Kubota (2013)).
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CHAPTER 16

Sluicing as anaphora to a continuation

Sluicing is a form of ellipsis in which the complement of a wh-phrase is miss-
ing, with its interpretation depending on material elsewhere in the discourse:
(251) Someone left, but I don’t know [who ].

In this sluicing example, the (bracketed) sluiced interrogative embedded under
know can be interpreted as if the expression left had been pronounced in the place
of the gap (‘ ’). That is, (251) can mean the same thing as Someone left, but I
don’t know who left.

The antecedent clause (here, someone left) typically contains within it an in-
definite (someone) whose role in the antecedent clause is parallel to the role of the
wh-phrase in the sluiced interrogative. Following Chung et al. (1995), we will call
the wh-phrase correlate the INNER ANTECEDENT.

Then the interpretation of the sluiced clause is given by the following recipe:

(252) sluice = wh-phrase+(antecedent-clause� inner-antecedent)

In this informal arithmetic, the sluiced clause [who ] in (251) can be interpreted
as who+([someone left]� someone) = who+ [ left]. Of course, the notion of
a clause with a piece subtracted is precisely what we have been calling a contin-
uation. Following Barker (2013), then, we will argue that sluicing is precisely
anaphora to a continuation.

16.1. Other approaches

There are currently three main approaches to sluicing. The first is due to
Chung et al. (1995), who suggest that the sluiced clause is constructed by copying
logical form material from the antecedent. The second is due to Romero (1998)
and Merchant (2001), who suggest that the complement of a wh-phrase can be
silent (deleted at PF) just in case the interrogative and the antecedent clause en-
tail each other, after factoring out the wh-phrase and the wh-phrase correlate.
The third approach is the one that is closest to ours in many respects, and is a
type-logical treatment due to (Jäger, 2001, 2005). Jäger suggests that sluicing is
anaphora to a particular kind of clause, a clause that contains an indefinite some-
where inside of it.

There are three empirical challenges that distinguish among the approaches.
One challenge is that the case of the wh-phrase must match the case of the inner
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antecedent (discussed below in section 16.4). Case-matching shows that there
must be some amount of syntactic information that is passed between the inner
antecedent and the sluice. A second challenge is that sluicing, by and large, is
insensitive to syntactic islands; we will not discuss syntactic islands here, though
see Barker (2013) for details. The third challenge is that sluices often do not have
an overt inner antecedent:
(253) John left, but I don’t know when .

There is no temporal modifier in the antecedent clause that correlates with the
wh-phrase; as discussed below, Chung et al. (1995) call this ‘sprouting’.

All three approaches are empirically robust, and all three address each of the
main empirical challenges, with one exception: it is not clear how to directly ex-
tend the indefinite-based type-logical anaphoric approach to sprouting. We will
explain how our continuation-based type-logical approach does extend to sprout-
ing in some detail below, so in some sense, the analysis here can be viewed as a
revision of the anaphoric approach that handles sprouting. (See Barker (2013) for
a more detailed discussion and comparison of competing accounts of sluicing.)

On the conceptual level, both the LF copying strategy and the PF deletion
strategy rely heavily on postulating syntactic structure inside the gap site. The
type-logical approaches reject this assumption, maintaining instead that there is
no structure in the silence.

Our main point is this: what all of these accounts are aiming at is a way of
interpreting the sluice gap as equivalent to the antecedent clause with the inner
antecedent removed. The LF copying strategy does this by replacing the inner
antecedent with a bound variable; the PF deletion strategy does this by abstracting
over the inner antecedent as part of the algorithm for computing the appropriate
sort of semantic equivalence; the indefinite-based type-logical account does this
by providing a special interpretation for clauses containing an indefinite on which
the indefinite is (in effect) abstracted.

We are proposing to state this generalization directly: for us, sluicing is anaphora
to a clause missing a DP, that is, anaphora to an expression in category DP)S—
anaphora to a continuation.

16.2. Basic sluicing

Before we can give an analysis for basic sluicing, we need to briefly consider
the syntax of interrogatives. In order to avoid dealing with subject auxiliary in-
version, we’ll limit consideration to embedded interrogatives, such as who left in
I know who left.

(254) a. I know [who ( left)].
b. I know [who (John ((saw ) yesterday))].
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The bracketed phrases are what we are calling embedded interrogatives.
In general, wh-phrases take as their complement a clause missing a DP some-

where inside of it. Then if Q is the category of embedded interrogatives, who will
have the syntactic category Q/(DP)S): something that must merge with a gapped
clause to its right in order to form an interrogative. All of this is just as in Part I.

Finally, we reason that if what is missing in a sluice is the complement of a
wh-phrase, and the complement of a wh-phrase has category DP)S, then the silent
proform SLUICEGAP must have the anaphoric category (DP)S)(DP)S): anaphora
to a continuation. On these assumptions, parasitic scope immediately gives a
syntactic and semantic analysis of simple sluicing examples:
(255) Someone left, but I don’t know who SLUICEGAP.

(sm1�DP)S) · (bidk · (who ·DP)S)) ` S
⌘

DP)S�ly((sm1� y) · (bidk · (who ·DP)S))) ` S
)R

ly((sm1� y) · (bidk · (who ·DP)S))) ` (DP)S))S
⌘

DP)S�l zly((sm1� y) · (bidk · (who · z))) ` (DP)S))S
)R

l zly((sm1� y) · (bidk · (who · z))) ` (DP)S))((DP)S))S)

DP ·DP\S ` S
⌘, LEX

DP�lx(x · left) ` S
)R

lx(x · left) ` DP)S S ` S
)L

lx(x · left)� (DP)S))S ` S
( L

lx(x · left)� (((DP)S))S)( ((DP)S))((DP)S))S))�l zly((sm1� y) · (bidk · (who · z)))) ` S
LEX

lx(x · left)� (SG �l zly((sm1� y) · (bidk · (who · z)))) ` S
⌘

lx(x · left)�ly((sm1� y) · (bidk · (who · SG))) ` S
⌘

(sm1�lx(x · left)) · (bidk · (who · SG)) ` S
⌘

(sm1 · left) · (bidk · (who · SG)) ` S
Recall that (DP)S)(DP)S) abbreviates ((DP)S))S)( ((DP)S))((DP)S))S));
here, bidk is an abbreviation of but-I-don’t-know, and behaves as if it had syntac-
tic category (S\S)/Q.

The first step in the derivation (starting at the bottom) is to allow someone to
take scope over the antecedent clause (in the second line from the bottom). Next
(third line from the bottom), the scope remnant lx(x · left) takes scope over the
entire utterance. At this point (fourth line), the silent proform takes parasitic scope
in order for the scope remnant to provide the content of the sluice gap.

16.3. Immediate good prediction: scope of inner antecedent

As Chung et al. (1995):255 note, sluicing is only possible when the inner an-
tecedent takes scope over the rest of the antecedent clause.
(256) Everyone selected a book, but I don’t know which book.

In order for a sluice to be possible, not only must the sluiced clause be interpreted
giving the wh-phrase scope over the universal, in which case there must be a single
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book that everyone selected, the antecedent clause must also receive a parallel
interpretation on which the indefinite takes wide scope over the universal. This
follows from the basic analysis given here:

(257) Someone saw everyone, but I don’t know who.

lx(x · (saw · everyone))� (SLUICEGAP �l zly((someone� y) · (bidk · (who · z)))) ` S
⌘

lx(x · (saw · everyone))�ly((someone� y) · (bidk · (who · SLUICEGAP))) ` S
⌘

(someone�lx(x · (saw · everyone))) · (bidk · (who · SLUICEGAP)) ` S
⌘

(someone · (saw · everyone)) · (bidk · (who · SLUICEGAP)) ` S
In order for the remnant lx(x · (saw · everyone)) to become available to serve

as an antecedent for the sluicegap, the inner antecedent someone must first take
scope over the rest of the antecedent clause (second line from bottom), forcing an
interpretation on which the indefinite takes wide scope with respect to the univer-
sal.

16.4. Case matching

Merchant (2001), following Ross (1969), argues that the morphological case
of the wh-phrase must match the case of the inner antecedent. Examples from
English will serve to illustrate this robustly cross-linguistic pattern:
(258) a. Someone spoke to John, but I don’t know who/*whom.

b. John spoke to someone, but I don’t know whom/%who.

In (258a), the inner antecedent is in subject position, and the wh-phrase must have
nominative case. In (258b), the inner antecedent is in object position, and the wh-
phrase must have accusative case. The ‘%’ marking in (258b) reflects the fact that
in most dialects of colloquial English, who can occur in many environments that
require accusative case.

On the analysis here, just as in Jäger (2001, 2005), case matching is a matter
of syntactic bookkeeping. The bookkeeping mechanism in question is indepen-
dently needed in order to enforce agreement in f features for bound pronouns.
For instance, in English, pronouns must match their antecedents in number:
(259) a. Every boyi said hei/*theyi left.

b. Most boysi said theyi/*hei left.

If we refine the syntactic category DP into the subcategories DP.SG and DP.PL,
then as long as the bound pronoun has category DP.SGDP.SG or DP.PLDP.PL, the
analysis of bound pronouns in the previous chapter will enforce number agree-
ment.

In the sluicing case, naturally, we will have wh-phrases that are distinguished
according to their case properties:
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(260) a. who: Q/(DP.NOM)S)
b. whom: Q/(DP.ACC)S)

Then as long as sluicegaps require that the syntactic category of its antecedent (the
exponent) is identical to the syntactic category of its syntactic role (the base), case
matching will be enforced.

(261) a. SLUICEGAP.NOM : (DP.NOM)S)(DP.NOM)S)

b. SLUICEGAP.ACC : (DP.ACC)S)(DP.ACC)S)

As Jäger (2001, 2005) observes, a type-logical analysis with suitably fine-grained
syntactic categories is capable of accurately describing the observed patterns of
case matching.

16.5. Simple sprouting

The indefinite-based type-logical account in Jäger (2001, 2005) requires the
presence of an indefinite DP somewhere inside the antecedent clause. However,
sluicing can still be possible without any overt indefinite in sight:

(262) John left, but I don’t know when . (= 253)

We will show how the continuation-based account here generalizes to sprouting
examples.

If some wh-phrases can be S modifiers, the analysis handles certain cases of
sprouting immediately. For instance, why may be able to take a clausal comple-
ment:

(263) I want to know why Mary decided John left.

The sentence in (263) can only be used to raise the issue of Mary’s motivations, not
John’s. This suggests that the syntactic category of why can be Q/S: something
that combines with a complete clause. If so, then the reason (263) is unambiguous
is that why is only able to combine with an adjacent, complete clause, in this case,
Mary decided John left. Then if we have a silent proform WHYSLUICEGAP with
category SS, we have the following simple derivation of John left, but I don’t know
why:

(264)

(John · left)� (WHYSLUICEGAP �lylx(x · (bidk · (why · y)))) ` S
⌘

(John · left)�lx(x · (bidk · (why ·WHYSLUICEGAP))) ` S
⌘

(John · left) · (bidk · (why ·WHYSLUICEGAP)) ` S

On this analysis, the antecedent for the sluicegap is the complete clause John left.
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16.6. Embedded sprouting: motivating silent modifiers

If all sprouting could always be analyzed as anaphora to a full clause, it would be
easy to generalize the indefinites-based type-logical analysis to cover sprouting.
However, the anaphora to a clause strategy will not generalize to the full range of
sprouting examples.

(265) I want to know when John wanted to leave.

Unlike (263), (265) is ambiguous: it can be used to ask when John felt a partic-
ular desire, or else to ask about John’s preferred departure time. We can suppose
that when has category S/(ADV)S), where ADV = (DP\S)\(DP\S). Then the
corresponding proform WHENSLGAP will have category (ADV)S)(ADV)S).

(266) John wanted to leave, but he didn’t say when .

In order to arrive at the most natural interpretation of (266), when must be inter-
preted as modifying the embedded verb phrase leave, rather than modifying the
entire antecedent clause. Therefore anaphora to a clause will not work here.

On the indefinite-based type-logical account, building a suitable meaning re-
quires constructing a function from temporal modifier meanings to sentence mean-
ings. But in the formal treatment of Jäger (2001, 2005), the rule that constructs
such meanings requires the presence of an overt indefinite in the position of the
inner antecedent.

The formal technique that we will use here to explain embedded sprouting
depends on inferences with empty antecedents. This technique has motivation
independent of sluicing. For instance, following Barker and Shan (2006), we
can make use of empty antecedents in a continuation-based grammar in order to
derive silent categories that can be used as gaps in derivations involving syntactic
movement.

In order to see how gaps motivate empty antecedents in the logic, we begin by
assuming that the empty structure is an identity element for both the merge mode
and for the continuation mode, i.e., G · ()· ⌘ G ⌘ ()· ·G, and G� ()� ⌘ G ⌘ ()� �G.
The justification for these structural equivalences is that adding a silent empty
structure does not change the resulting syntactic structure. (It is necessary to dis-
tinguish the empty merge structure (‘()·’) from the empty continuation structure
(‘()�’) in order to prevent overgeneration: if the empty merge structure can be
mistaken for the empty continuation structure, the grammar becomes commuta-
tive.)
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If we allow the empty structure as a syntactic identity element, we can prove
that the silent empty structure is a member of the following category:

(267)

DP)S ` DP)S
⌘

()� �DP)S ` DP)S
( R

()� ` (DP)S)( (DP)S)

In general, silence will be a member of any category of the form X |X , where ‘|’ is
any of the four category-forming connectives (‘\’, ‘/’, ‘)’, ‘( ’).

If we have empty antecedents, we can derive interrogatives with fronted wh-
phrases such as Who does John like? as follows, where GAP abbreviates the iden-
tity category derived immediately above, namely, (DP)S)( (DP)S):

(268)

does · (John · (like ·DP)) ` S
⌘

DP�lx(does · (John · (like · x))) ` S
)R

lx(does · (John · (like · x))) ` DP)S DP)S ` DP)S
( L

(DP)S)( (DP)S)�lx(does · (John · (like · x))) ` DP)S
LEX

GAP �lx(does · (John · (like · x))) ` DP)S
⌘

does · (John · (like ·GAP)) ` DP)S

Clearly, this works exactly like the gaps that were stipulated to be of the form A( A
in Part I. And, on the semantic side, just as in Part I, the Curry-Howard labeling
of empty categories is always the identity function. In the syntax, they have a null
effect, taking an X as complement and returning an identical X as the resulting
syntactic category; and likewise in the semantics, they have a null effect, taking
x as an argument and returning that same x as the resulting value. To take an
arithmetic analogy, deriving an empty category is like multiplying by 2/2, or by
(3/2)/(3/2), etc. But this is just multiplying by 1, which amounts to recognizing
that the empty category is an identity element. In slogan form: adding nothing to
a structure does not change that structure.

Empty antecedents are usually disallowed in type logical grammar. One rea-
son to suppose they may be problematic, at least for natural-language applications,
is that they can lead to trouble with adjunct modifiers. If we assume that adjec-
tives have category N/N, and that adjective modifiers such as very have category
(N/N)/(N/N), then we can derive a silent identity-function denoting adjective
with category N/N. The prediction is that in addition to (very · tall) · man, we
should be able to say *(very · ()·) · man. This prediction is incorrect, of course.
Thus using empty antecedents requires finding a different analysis for adjectival
modifiers. For instance, we might suppose that very can only modify gradable
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adjectives (*That’s a very prime number). Once we refine the category of adjec-
tives and of very to track gradability, silent adjectives will presumably not count
as gradable.

There is a technical reason for dispreferring empty antecedents, which is that
they create issues for decidability: if it is always possible to add a new empty
category, we may never be sure we have found all of the legitimate derivations.
For a solution to the decidability issue, see section 17.9.

16.7. Sprouting in silence

If we have empty antecedents, we can derive embedded sprouting cases. Sprout-
ing, then, will involve postulating an empty structure within the antecedent clause.

For instance, let ordinary adverbs have category ADV = (DP\S)\(DP\S).
Assume that when has category Q/(ADV)S), and WHENSLGAP has category
(ADV)S)(ADV)S). Then we have the following derivation of the sprouting ex-
ample John left, but I don’t know when:
(269)

DP\S ` DP\S
⌘

DP\S · ()· ` DP\S
\R

()· ` (DP\S)\(DP\S)
DEF

()· ` ADV S · (bidk · (when ·ADV)S)) ` S
)L

(()· �ADV)S) · (bidk · (when ·ADV)S)) ` S
⌘

ADV)S�ly((()· � y) · (bidk · (when ·ADV)S))) ` S
)R

ly((()· � y) · (bidk · (when ·ADV)S))) ` (ADV)S))S
⌘

ADV)S�l zly((()· � y) · (bidk · (when · z))) ` (ADV)S))S
)R

l zly((()· � y) · (bidk · (when · z))) ` (ADV)S))((ADV)S))S)

John · (left ·ADV) ` S
⌘

ADV �lx(John · (left · x)) ` S
)R

lx(John · (left · x)) ` ADV)S S ` S
)L

lx(John · (left · x))� (ADV)S))S ` S
( L

lx(John · (left · x))� (WHENSLGAP �l zly((()� y) · (bidk · (when · z)))) ` S
⌘

lx(John · (left · x))�ly((()� y) · (bidk · (when ·WHENSLGAP))) ` S
⌘

(()· �lx(John · (left · x))) · (bidk · (when ·WHENSLGAP)) ` S
⌘

(John · (left · ()·)) · (bidk · (when ·WHENSLGAP)) ` S
⌘

(John · left) · (bidk · (when ·WHENSLGAP)) ` S

The first step in the proof (reading from the top downwards) is to recognize that
because the empty structure is an identity element, DP\S is structurally equiva-
lent to (DP\S · ()·). The proof proceeds as usual, until the final step, when we
remove the empty structure. Although the silent adverbial is syntactically and se-
mantically inert, it serves to mark the position with respect to which the remainder
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(continuation) of the antecedent clause is defined. This is enough to complete the
sluicing derivation in the normal way.

Thus, given independently-motivated empty antecedents, we can sprout silent
identity-function denoting modifiers that are syntactically and semantically harm-
less, and we can sprout them whenever we need them in order to nucleate a sluic-
ing analysis.

Note that this technique only sprouts adjuncts, such as VP modifiers, and not
arguments or specifiers. This is a good thing:

(270) a. Someone’s dogs barked, but I don’t know who.
b. *Dogs barked, but I don’t know who.

As discussed in Chung (2013), a possessor can be sluiced as long as there is an
appropriate overt inner antecedent, as in (270a), but a possessor can’t be sprouted,
as shown in (270b). (The fact that whose is a grammatical sluice is irrelevant,
since it takes the entire DP as the inner antecedent, with the nominal dog deleted
via an independent ellipsis process common to possessives.) On the analysis here,
the reason we can’t sprout possessors is that they have category DP/N, which is
not an identity category.

Section 17.10 below considers a way of compiling various structural rules into
the logical rules for computational reasons. As shown there, on that variation of
the logic, embedded sprouting turns out to be simple parasitic scope.

16.8. Implicit argument sluices

There is a class of examples in which the missing inner antecedent is an argu-
ment rather than an adjunct. This is generally possible only when the argument in
question is optional:

(271) John ate/*dined, but I don’t know what.

Whether an argument is optional is specified in the lexicon on a per-item basis.
Implicit-argument sluices are often considered as a subtype of sprouting, fol-

lowing the terminology of Chung et al. (1995), but on our account, implicit argu-
ment sluices require a different analysis from sprouting.

Because implicit-argument sluicing is lexically governed, type logical gram-
mar makes available an analysis involving product categories: if A and B are syn-
tactic categories, then so is A⇥B, the product of A and B. Products have the logic
of multiplicative conjunction:

S[A ·B] `C
⇥L

S[A⇥B] `C

G ` A D ` B
⇥R

G ·D ` A⇥B
(272)

Product categories are related in an intimate way to the slash categories by the
residuation law: A `C/B iff A⇥B `C iff B ` A\C.
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The logical rules for the product say that when you have something of category
A ⇥ B, it will behave exactly as if you had something of category A followed
by something of category B. This enables a single lexeme (say, eat) to behave
as if it contributed two independent elements into the derivation. Thus we can
suppose that the intransitive eat has the category ((DP\S)/DP)⇥ (S( (DP)S)):
it functions as if it were a transitive verb followed by a (silent) quantifier. This
gives rise to the following derivation for the sluiced sentence John ate, but I don’t
know what:

(273)

(John · (((DP\S)/DP) ·S( (DP)S))) · (bidk · (what · SLUICEGAP)) ` S
⇥L

(John · ((DP\S)/DP)⇥S( (DP)S)) · (bidk · (what · SLUICEGAP)) ` S
LEX

(John · ateINTR) · (bidk · (what · SLUICEGAP)) ` S

The remainder of the proof proceeds exactly as if there had been an overt direct
object.

Naturally, just as for conjunction in, say, intuitionistic logic, the semantics
for a product category is an ordered pair. In this case, the denotation for the
intransitive eat will be an ordered pair consisting of the meaning of the transitive
eat along with the meaning of something (roughly, lP9x.Px).

On the analysis here, once the implicit argument has entered the derivation,
there is nothing to prevent it from taking scope just like any overt existential
quantifier. This makes good predictions with respect to sluicing, since the sco-
pability analysis here requires the implicit argument to take scope over the rest of
the antecedent clause in order to serve as an inner antecedent for sluicing.
(274) a. Everyone ate, but I don’t know what.

b. Everyone in the room was reading, but I don’t know what.

To the extent that these sentences imply that there was some particular thing that
everyone ate or read, they are consistent with the claims about scoping and sluic-
ing here.
(275) *No one ate, but I don’t know what.

Likewise, the ungrammaticality of (275) can be explained by the fact that downward-
entailing quantifiers such as no one make it difficult or impossible for an indefinite
in the verb phrase to take scope over the rest of the antecedent clause.

Note that implicit arguments can be prepositional phrases that require specific
prepositions:
(276) a. John was flirting, but I don’t know *(with) who.

b. Ralph was astonished, but I don’t know *(at) what.
c. Marian was interested, but I don’t know *(in) what.

As long as the categories of the intransitive versions of these predicates are (DP\
S)⇥ PP.with, (DP\S)⇥ PP.to, and (DP\S)⇥ PP.in, where, for instance, PP.with
is the syntactic category of a prepositional phrase headed by with, we correctly



In
Pres

s
16.9. A RECURSIVE SCOPE ANALYSIS OF ANDREWS AMALGAMS 175

predict not only that the wh-phrase in the sluice must be a prepositional phrase,
but which preposition is the right one.

The scope behavior of implicit arguments required for sluicing is somewhat
at odds with the typical behavior of implicit arguments. Apart from sluicing,
implicit arguments generally take narrowest scope: Everyone ate can mean that
for each person, there is something that they ate, but usually isn’t taken to assert
that there is some particular thing that everyone ate. However, it is well known
(e.g., Tancredi (1992)) that focusing a phrase can enable it to take unusually wide
scope. It is hard to imagine focusing an implicit argument in most situations,
since it is silent. However, as suggested by Sandra Chung (personal communi-
cation, 2012/06/08), if we were to assume that sluicing guarantees that the inner
antecedent must be in focus, sluicing provides a way to deduce that the implicit
argument must be in focus, and therefore can take wide scope.

See Barker (2013) for additional argument structure constraints on implicit
argument sluicing.

16.9. A recursive scope analysis of Andrews Amalgams

In the analysis of sluicing offered here, the elided complement of a wh-phrase gets
its content from a continuation, that is, from the scope remnant of a DP. The rela-
tionship between the sluice gap and its content-providing scope remnant is treated
as anaphora. But there are other ways of gaining access to a DP continuation be-
side anaphora. Indeed, the prototypical way to gain access to a continuation is
the method that generalized quantifiers such as everyone or most girls use, that
is, by taking scope over it. Could there be a sluice-like ellipsis construction that
acquired its gap content directly through scope-taking?

There is a construction in English that might qualify, what Lakoff (1974) calls
an Andrews Amalgam:

(277) a. Sally will eat something today, but I don’t know what .
b. Sally will eat [I don’t know what ] today.

In (277a), we have an ordinary sluice, where the inner antecedent is someone.
The (grammatical) sentence in (277b) has roughly the same meaning, but in the
place of someone sits an entire clause containing what appears to be a sluiced
interrogative. Just as in the normal sluice, (277b) entails that the speaker does not
know the answer to the question of what Sally will eat today.

Providing an analysis for these amalgams is challenging under standard as-
sumptions, not least of all because it appears to be a case of ellipsis for which
there is no obvious antecedent. Strategies for extending the standard framework
include positing a special merge operation that combines two complete clauses,
e.g., as in Kluck (2011), or else allowing trees in which nodes have more than one
mother, e.g., as in Johnson (2012).
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The formalism developed here accounts for Andrews Amalgams without any
extension or modification. Let G ⌘ S( (DP)S) abbreviate the category of a scope-
taking generalized quantifier, the same category as ordinary quantifiers such as
everyone or most girls. Then we need only allow ourselves a silent proform, writ-
ten AMALGAM, having syntactic category G( ((DP)S))S) and semantic value
lFlP9x.Px^ (FP).

Because the result category G ⌘
S S
DP

is itself scope-taking category, this is a

case of recursive scope. (Recall that Solomon (2011) proposes a recursive-scope
analysis of same as discussed above in section 14.4.)

In order to see how this analysis works, it is important to understand how the
AMALGAM proform turns the clause in which it is embedded into a generalized
quantifier:

(278)

idk · (what ·DP)S) ` S
⌘

DP)S�lx(idk · (what · x)) ` S
)R

lx(idk · (what · x)) ` (DP)S))S G ` G
( L

G( ((DP)S))S)�lx(idk · (what · x)) ` G
⌘

AMALGAM �lx(idk · (what · x)) ` G
⌘

idk · (what ·AMALGAM) ` G

Here, ‘idk’ is short for ‘I don’t know’, and has category S/Q; what, as usual, has
category Q/(DP)S). This proof shows that it makes sense for the expression I
don’t know what AMALGAM to function syntactically as if it were a (scope-taking)
DP. The Curry-Howard denotation of this generalized quantifier is lP9x.Px^
I-don’t-know(what P).

With this lemma in place, it is easy to see how the complete derivation of
(277b) will go. Essentially, the synthetic quantifier phrase I don’t know what
AMALGAM takes scope over the rest of the sentence:

(279)

ly(idk · (what · y)) ` (DP)S))S G �lx(Sally · (ate · x)) ` S
( L

(G( ((DP)S))S)�ly(idk · (what · y)))�lx(Sally · (ate · x)) ` S
⌘, LEX

(idk · (what ·AMALGAM))�lx(Sally · (ate · x)) ` S
⌘

Sally · (ate · (idk · (what ·AMALGAM))) ` S

Reading from the bottom line upward: the first step is to allow the quantifier
phrase [I don’t know what AMALGAM] to take scope over Sally ate . As a result,
on the second line from the bottom, we have a generalized quantifier taking scope
over a DP remnant—this is the heart of the analysis. The derivation continues
by allowing AMALGAM to take scope over the quantifier phrase (third line), and
proceeding upwards in a manner similar to previous derivations.
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Turning to the semantics, the fact that the symbol P occurs twice in the body
of the semantic denotation (lFlP9x.Px^ (FP)) is what makes this construction
a form of ellipsis: the content of the continuation P is used twice to build the
semantic value of the complete sentence. In the Curry-Howard semantics of the
derivation just sketched, F corresponds to the function from properties P to the
proposition that the speaker doesn’t know what has property P; and P corresponds
to the property of being something that Sally will eat today. The net result is that
(277b) is predicted to mean that there exists something that Sally is going to eat
today, and the speaker doesn’t know what Sally is going to eat today.

16.10. Semantic restrictions on sluicing: the Answer Ban

Not every inner antecedent gives rise to a successful sluice.
(280) a. Someone left, but I don’t know who.

b. *John left, but I don’t know who.

To a first approximation, setting aside sprouting examples, the wh-correlate (the
inner antecedent) is usually indefinite. In fact, (Jäger, 2001, 2005)’s analysis re-
quires that the inner antecedent must always be indefinite. This is too restrictive:
(281) John left, but I don’t know who else.

Although there is no prohibition against definite inner antecedents, we should
and will say something about the conditions under which they are felicitous; see
Barker (2013) for a more detailed discussion.

AnderBois (2011) argues that sluices are anaphoric to issues, in the sense
of Inquisitive Semantics (e.g., Groenendijk and Roelofsen (2009), Mascarenhas
(2009)). More specifically, AnderBois (2011) argues that the antecedent must
raise an issue, that is, have inquisitive content, and the sluiced interrogative must
raise the same issue. In Inquisitive Semantics, questions, indefinites, disjunctions,
and existential modals all give rise to inquisitive content. This correctly predicts
that disjunctions can serve as inner antecedents, just like indefinites can:
(282) a. Someone left, but I don’t know who.

b. John or Mary left, but I don’t know which one.

One limitation of an inquisitive-semantics conception of sluicing is that licensing
a sluice cannot be a purely semantic matter, in view of the case matching effects
discussed above. But even on purely semantic grounds, the simple form of the
anaphora-to-issues theory both overgenerates and undergenerates:
(283) a. John will leave or John won’t leave, but I don’t know which (one).

b. *John might leave, but I don’t know which (one).

On the inquisitive-semantics account of Ciardelli et al. (2009), might in (283b)
raises the same issue as the disjunctive antecedent in (283a). Yet the sentence
with the modal does not license sluicing.
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There is an additional difficulty related to undergeneration. Sprouting is a
puzzle on a pure Inquisitive Semantics approach, since it is far from clear how an
antecedent such as John left raises the issue of when John left. That is what would
be required to license a sprouting case such as John left, but I don’t know when.
And in fact, one and the same antecedent would have to give rise to an unbounded
number of potential issues; for instance, in order to license the sluice who else in
(281), John left would have to also give rise to the issue of who else besides John
left.

Given these challenges to at least the simple version of the anaphora-to-issues
theory, I will suggest that there is an independent semantic constraint at work in
sluicing. It is inspired by AnderBois’ approach, but different from it; see also a
related proposal in Barros (2013). In particular, unlike AnderBois’ hypothesis, it
does not require that the antecedent raise an issue:
(284) The Answer Ban: the antecedent clause must not resolve, or even par-

tially resolve, the issue raised by the sluiced interrogative.
Some examples will illustrate:
(285) #John left but I don’t know who.

In (285), the interrogative raises the issue of who left. But the antecedent entails
that John left, which settles (or at least partially settles) the issue. As we saw in
(281), however, the fact that John left does not settle the issue of who else left,
and the sluice is fine.

(286) a. #John or Mary left, but I don’t know who.
b. John or Mary left, but I don’t know which one.

In (286a), the issue is once again who left. The proposition that John or Mary left
does not completely settle the issue, but it does partially resolve the issue, since
it rules out possibilities in which neither John nor Mary left. But in (286b), the
issue raised by the interrogative involves only a finite set of alternatives; as long
as we take that set to contain exactly two alternatives involving John and Mary,
then the proposition that John or Mary left does not resolve the issue raised by the
interrogative, and the sluice is perfectly fine.

We should hasten to point out that there is a well-known class of cases in which
a sluice antecedent seems to partially resolve the sluice, in apparent defiance of
the Answer Ban.
(287) John met a woman, but I don’t know who .

If the issue raised by the sluiced clause were exactly the question denoted by the
interrogative who John met, then the set of possible answers would involve both
men and women. But (287) is interpreted as asserting the more specific claim that
the speaker doesn’t know which woman John met. Chung et al. (1995) call this
‘Merger’, and in their account, both the inner antecedent and wh-phrase impose
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semantic restrictions on one and the same variable in logical form. On the face of
it, Merger examples appear to be inconsistent with spirit of the answer ban, since
the proposition that John met a woman is a partial answer to the question of who
John met.

However, this conclusion only goes through if we assume that the issue raised
by the sluice is identical with the denotation of the sluiced clause. This can’t be
right in general for any theory of questions: a use of the interrogative who John
met typically does not ask for a complete specification of all the people John has
ever met. Rather, it is limited in the familiar (if still mysterious) way that domain
narrowing usually works. The net effect is that the question is interpreted as asking
who John met out of some salient group of candidates that are relevant for some
conversational purpose. If the speaker of (287) takes it for granted that the person
John met was a woman, then the issue raised by the interrogative is the question of
who John met from among the set of relevant women, an issue that is compatible
with the answer ban.

Why would a grammar impose an answer ban? It is easy to understand the
prohibition against re-raising a previously resolved issue in simple cases: it is
incoherent to draw attention to the issue of who left if you already know who
left. Addressing similar facts, Dayal and Schwarzschild (2010) point out that
we shouldn’t be surprised to discover that a sluice is infelicitous if the unsluiced
discourse is infelicitous in the same way (#John left, but I don’t know who left).
But a coherence requirement fails to account for more complex situations:
(288) *Mary knows that John left, but Bill doesn’t know who.
In (288), although Mary’s knowledge settles the issue of who left, the issue can
remain completely unresolved in Bill’s mind; nevertheless, the sluice is degraded.
The answer ban as stated in (284), however, depends only on the content of the
antecedent clause John left and the sluice, and does not depend on anyone’s epis-
temic state, so (288) is correctly predicted to be infelicitous. What we’re suggest-
ing is that the Answer Ban is a grammaticized constraint on epistemic coherence.

In sum, we have argued in this chapter for an anaphoric theory of sluicing.
Like Jäger’s proposal, it accounts for case matching and island insensitivity. Un-
like Jäger’s specific analysis, it also generalizes smoothly to sprouting and implicit
argument sluices. Unlike any of its competitor accounts, it also easily handles An-
drews Amalgams. The net result is a theory of sluicing on which sluicing amounts
to anaphora to a scope remnant, i.e., anaphora to a continuation. To the extent that
this account of sluicing is viable, it supports the main thesis of this book, which
is that explicitly recognizing continuations is an essential element in a complete
understanding of natural language composition.
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CHAPTER 17

Formal properties of NLl

NLl was introduced in chapter 13 as a completely ordinary multi-modal type-
logical grammar, except for its one unusual structural postulate, repeated here:

(289) S[D]⌘ D�la S[a]

As discussed and illustrated in previous chapters, this is a form of lambda ab-
straction in the syntax, which we claim underpins the logic of scope-taking. In
combination with the logical rules, this postulate says that in the continuation
mode, an expression combines with its argument by surrounding it (‘)’), or by
allowing the argument to do the surrounding (‘( ’).

The way that this is accomplished is by allowing a substructure D to take
scope over a larger structure that contains it. As our notation emphasizes, the
relationship between the focused structure D and the structure over which it takes
scope is very much like the relationship between the argument and the abstract
it combines with. As we have mentioned in the preface to Part II, the idea of
allowing something like beta reduction in the syntax is in the spirit of Oehrle
(1994), Muskens (2001), and de Groote (2002).

Admittedly, the postulate in (289) is not a typical structural postulate. For one
thing, typical postulates adjust structures locally. For instance, here is a structural
inference rule (not adopted here) that guarantees associativity for the merge mode:

(290) p · (q · r)⌘ (p ·q) · r

This rule rearranges structures, but only across two levels of structural grouping.
In contrast, the lambda postulate in (289) allows an in-situ scope-taker to take
scope over a surrounding structure of unbounded size in one swoop.

For another thing, the postulate in (289) involves structures built out of lamb-
das and variables, which are by no means a typical part of structural inference
rules.

So is the lambda-like structural postulate kosher? This chapter addresses this
question by studying NLCL, a type-logical grammar in which the work done by
(289) is factored into a small set of perfectly well-behaved structural postulates.
More specifically, the postulates of NLCL conform to the general requirements
placed on structural postulates studied by Restall (2000) in his chapter 11. As a
result, we show in section 17.3 that Restall’s proof of soundness and completeness
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holds for our logic as well. This means that NLCL is sound and complete with
respect to the same class of models as other more familiar substructural logics.

Furthermore, in section 17.4, we show that NLCL does not disturb the struc-
ture of the underlying grammar NL. That is, NLCL is conservative over the non-
associative Lambek grammar: a sequent that contains only the merge mode is a
theorem of NL iff it is is a theorem of NLCL. This means that NLCL can be used
without worrying that the introduction of scope-taking might change the logic of
the merge mode in any way.

Once we have established these formal properties of NLCL, we will show that
a suitably restricted version of NLl is equivalent to NLCL in the following sense:
given a sequent built up from formulas combined with · and �, if there is a deriva-
tion of that sequent in one of the logics, there is an equivalent derivation in the
other. Two derivations are equivalent if they have the same assumptions and the
same conclusion, reached via the same sequence of logical rules, with the same
Curry-Howard semantic labeling.

The ‘CL’ in NLCL stands for Combinatory Logic, though it could equally well
stand for Continuation Logic. The rationale for this name, as we will explain
below, is that the equivalence between NLl and NLCL is directly analogous to the
well-known equivalence between the lambda calculus and Combinatory Logic.

17.1. Scope-taking in type-logical grammars

There are a number of other type-logical analyses that address scope-taking
in the literature. To start with, a limited form of scope taking results from adding
associativity to the merge mode, that is, by adopting the structural postulate in
(290). However, as pointed out by many (e.g., Moortgat 1997), this strategy only
accounts for scope-takers that happen to be at the left or right edge of their scope
domain, (e.g., John saw everyone), and does not account of scope-takers that are
surrounded on both sides by their scope domain (John saw everyone yesterday).

Moortgat (1988, 1997) provides a more robust account of scope-taking by
defining a type constructor q (‘q’ for quantification). The logic of q captures
how an in-situ scope-taker interacts with its context: an expression in category
q(A, B, C) functions locally as an A, takes scope over a B, and functions in the
larger context as an expression of category C. This is exactly what a scope-taking
expression needs to do. However, the logical characterization of q is problematic.
For instance, although it is easy to write a left rule (a rule of use) for q, a gen-
eral right rule (a rule of proof) remains elusive. Furthermore, it is unsatisfactory
that the many decompositions of q into structural postulates in the literature all re-
quire either more than two modes (e.g., Morrill 1994) or additional mechanisms to
prevent commutativity from leaking into the merge mode (e.g., Barker and Shan
2006). It is thus worth noting that the rule of use for q is a theorem in our logic,
where q(A, B,C) is implemented as C( (A)B), as shown below in section 17.10.
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In any case, empirically, as insightful as the q constructor is for characterizing
normal in-situ scope-taking, it will not suffice for describing the kind of parasitic
scope-taking argued for in Part II. The reason is that in order to recognize the
nuclear scope of a host quantifier as a constituent (the essence of parasitic scope),
we must be free to reason about continuations of the form A)B independently of
the quantifiers that take them as arguments. But there is no way to isolate any
category involving just A and B within the category q(A, B,C).

Bernardi and Moortgat (2007), Moortgat (2009), Bernardi and Moortgat (2010)
give a logic called Lambek-Grishin (LG) that provides connectives for quantifica-
tion that make continuations explicit. However, the nuclear scope of a quantifier
is still not a logical constituent in LG. As a result, it is likewise not clear how LG
could account for the parasitic scope treatments of same, anaphora, verb phrase
ellipsis, average, and sluicing. See section 18.2 for a more detailed discussion of
LG.

17.2. NLCL: An equivalent logic with standard postulates

The postulate given above in (289) succinctly expresses the logic of scope-
taking. However, as mentioned above, it is a somewhat unusual postulate. In this
section we give a more cumbersome but equivalent logic that uses only standard
postulates.

We define NLCL, a non-associative Lambek grammar with the same two modes
as NLl , namely, the merge mode and the continuation mode, as in chapter 13.
However, whereas NLl builds augmented structures with l and syntactic vari-
ables, NLCL instead adds three atomic structures: I, B, and C. As we will explain,
these atomic structures are analogous to the Combinatory Logic combinators I, B,
and C, as named by Curry.

The logical inference rules of NLCL are exactly as given above in (220) in
chapter 13, repeated here (without change) for ease of reference:

Axiom
A ` A(291)

G ` A S[B] `C
\L

S[G ·A\B] `C

A ·G ` B
\R

G ` A\B

G ` A S[B] `C
/L

S[B/A ·G] `C

G ·A ` B
/R

G ` B/A

G ` A S[B] `C
)L

S[G�A)B] `C

A�G ` B
)R

G ` A)B

G ` A S[B] `C
( L

S[B( A�G] `C

G�A ` B
( R

G ` B( A

These are the same logical rules that we have been using throughout Part II, and
are standard in type-logical discussions, as in, e.g., Moortgat (1997):129.
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In addition to the logical rules, NLCL has three structural postulates:
p

=== I
p� I

p · (q� r)
========== B
q� ((B · p) · r)

(p�q) · r
========== C
p� ((C ·q) · r)

(292)

These postulates are identical to the ones given in Barker (2007). Restall (2000):30
considers I (which he writes ‘0’) as “a zero-place punctuation mark,” where punc-
tuation marks (p. 19) “stand to structures in the same way that connectives stand
to formulae.” Likewise, B and C are also zero-place punctuation marks. The dou-
ble horizontal line indicates that these rules are bi-directional, i.e., inference in the
top-to-bottom direction and in the bottom-to-top direction are both valid. Restall
calls the top-to-bottom inference for the I postulate Push, and the other direction
Pop.

In the form of an official inference rule, the I postulate (for instance) is written

(293)
S[p] ` A

========
S[p� I] ` A

,

and similarly for the other rules.
In the usual terminology for classifying structural postulates, I is a right iden-

tity with respect to �, B governs mixed commutativity involving · and �, and C
governs mixed associativity involving · and �. However, we will suggest below
other ways of understanding what these postulates are doing.

An example derivation will show how these postulates work together to achieve
in-situ quantification for the sentence John saw everyone:

(294)

DP ` DP

DP ` DP S ` S
\L

DP ·DP\S ` S
/L

DP · ((DP\S)/DP ·DP) ` S
LEX

john · (saw ·DP) ` S
I

john · (saw · (DP� I)) ` S
B

john · (DP� ((B · saw) · I))) ` S
B

DP� ((B · john) · ((B · saw) · I)) ` S
)R

(B · john) · ((B · saw) · I) ` DP)S S ` S
( L

S( (DP)S)� ((B · john) · ((B · saw) · I)) ` S
LEX

everyone� ((B · john) · ((B · saw) · I)) ` S
B

john · (everyone� ((B · saw) · I)) ` S
B

john · (saw · (everyone� I)) ` S
I

john · (saw · everyone) ` S
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This derivation is equivalent to the NLl derivation given above in (224). That is,
it differs only in the application of structural rules.

Since one of the distinctive advantages of NLl over some other approaches is
the ability to handle higher-order continuations, which is what enables derivations
of parasitic scope, we should demonstrate how NLCL accounts for a parasitic scope
example. Here is a derivation of The same waiter served everyone:
(295)

···
(the · (A ·waiter)) · (served ·DP) ` S

I
(the · (A ·waiter)) · (served · (DP� I)) ` S

B
(the · (A ·waiter)) · (DP� ((B · served) · I)) ` S

B
DP� ((B · (the · (A ·waiter))) · ((B · served) · I)) ` S

)R
(B · (the · (A ·waiter))) · ((B · served) · I) ` DP)S

I
(B · (the · ((A� I) ·waiter))) · ((B · served) · I) ` DP)S

C
(B · (the · (A� ((C · I) ·waiter)))) · ((B · served) · I) ` DP)S

B
(B · (A� ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I) ` DP)S

B
(A� ((B ·B) · ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I) ` DP)S

C
A� ((C · ((B ·B) · ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I)) ` DP)S

)R
((C · ((B ·B) · ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I)) ` (A))(DP)S) DP)S ` DP)S

( L
(DP)S)( ((A))(DP)S))� ((C · ((B ·B) · ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I)) ` DP)S

LEX
same� ((C · ((B ·B) · ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I)) ` DP)S

C
(same� ((B ·B) · ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I) ` DP)S

B
(B · (same� ((B · the) · ((C · I) ·waiter)))) · ((B · served) · I) ` DP)S

B
(B · (the · (same� ((C · I) ·waiter)))) · ((B · served) · I) ` DP)S

C
(B · (the · ((same · I) ·waiter))) · ((B · served) · I) ` DP)S

I
(B · (the · (same ·waiter))) · ((B · served) · I) ` DP)S S ` S

( L
S( (DP)S)� ((B · (the · (same ·waiter))) · ((B · served) · I)) ` S

LEX
everyone� ((B · (the · (same ·waiter))) · ((B · served) · I)) ` S

B
(the · (same ·waiter)) · (everyone� ((B · served) · I)) ` S

B
(the · (same ·waiter)) · (served · (everyone� I)) ` S

I
(the · (same ·waiter)) · (served · everyone) ` S
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Considerably more inferences are required when abstractions are accomplished
step by step rather than in one long jump. However, since this derivation differs
from the corresponding derivation given in chapter 14 only in the application of
structural postulates, which do not affect the Curry-Howard labeling, the semantic
value is exactly as for the equivalent derivation in NLl .

The derivations just shown establish that NLl and NLCL can provide highly
similar analyses of natural language phenomena. We will consider the exact nature
of the equivalence between the logics in some detail, after first proving some
results about NLCL.

17.3. Soundness and completeness

NLCL is sound and complete with respect to the usual class of relational mod-
els. We will give enough details to make it clear that soundness and completeness
follows directly from the proofs given in Restall (2000), chapter 11.

A frame F for NLCL consists of

• A (flat) set of points P
• 3-place accessibility relations R· and R�
• 1-place predicates I, B, and C

A model M for NLCL is a frame along with an evaluation relation � that satisfies
the following:

x � Z/Y iff 8y, z.(R·xyz^ y � Y )! z � Z
y � X\Z iff 8x, z.(R·xyz^ x � X)! z � Z

x � Z( Y iff 8y, z.(R�xyz^ y � Y )! z � Z
y � X)Z iff 8x, z.(R�xyz^ x � X)! z � Z

x � I iff x 2 I
x � B iff x 2 B
x � C iff x 2C

z � p ·q iff 9x, y.R·xyz^ x � p^ y � q
z � p�q iff 9x, y.R�xyz^ x � p^ y � q

Restall (2000):249 provides an algorithm for constructing frame conditions
corresponding to the structural postulates. Given our structural postulates, the
algorithm produces the following frame conditions:
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Structural postulate: Frame condition:
p

===
p� I

8pz. (p = z)$
(9i. R�piz^ Ii)

p · (q� r)
==========
q� ((B · p) · r)

8pqrz. (9y. R·pyz^R�qry)$
(9bxy. R�qyz^R·xry^R·bpx^Bb)

(p�q) · r
==========
p� ((C ·q) · r)

8pqrz. (9x. R·xrz^R�pqx)$
(9cxy. R�pyz^R·xry^R·cqx^Cc)

Theorem (Soundness and completeness): X ` A is provable in NLCL iff for
every model M= hF , |=i that satisfies the frame conditions above, 8x 2 F , x |=
X ! x |= A.

Proof: given in Restall (2000), theorems 11.20, 11.37.

17.4. NLCL is conservative over NL

Because in-situ scope-taking requires establishing a long-distance dependency
with medial embedded elements, it provides limited access to both associativity
and commutativity. It is worth wondering whether commutativity could leak into
the merge mode, in effect allowing illicit scrambling of argument positions. For
instance, in Barker and Shan (2006), the simplest version of their structural postu-
lates gives rise to commutativity in the presence of a right identity (see Barker and
Shan (2006):footnote 2). Barker and Shan eventually adopt more specific postu-
lates for independent reasons in a way that fortuitously blocks unwanted commu-
tativity. In any case, we prove here that NLCL does not have any commutativity
problem even in its simplest, most general presentation.

Theorem (Conservativity): Let an NL sequent be a sequent built up only from
the formulas and structures allowed in NL: /, \, ·. An NL sequent is provable in
NLCL iff it is provable in NL.

Proof: The ‘if’ direction is easy, since every NL derivation is also an NLCL
derivation. In the ‘only-if’ direction, we need to show that if an NL sequent is not
valid in NL, it is not valid in NLCL.

The proof proceeds by extending a falsifying NL model to a falsifying NLCL
model. Suppose that an NL sequent f is not valid in NL. Then there is a model
M of NL, whose (flat) point-set is P and whose (only) ternary relation is R, such
that there is some x 2 P that falsifies f .

We want to extend the model M of NL to a new model MCL of NLCL in which
the same point x still falsifies f . Without loss of generality, assume P contains
no ordered pairs. Let a, i, b, and c be four distinct points not in P that are also
not ordered pairs. Let the (flat) point-set PCL of the new model be the smallest
set such that
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• P is a subset of PCL;
• a, i, b, c, are elements of PCL;
• the ordered pair hx, yi is in PCL whenever both x and y are in PCL and

either x or y is not in P [{a}.
As one might expect, we let i be the (only) point in the new model that satisfies
the predicate I, and likewise for b and c and their respective predicates.

Let R· and R�, the three-place relations of MCL, be the smallest relations such
that

• R·xyz if Rxyz, for any x, y, z 2 P .
• R·xyhx, yi if either x or y is not in P [{a}, for any x, y 2 PCL.
• R·aaa.
• R�ziz, for any z 2 PCL.
• R�qhhb, pi, riz if R�qry and R·pyz, for any p, q, r, y, z 2 PCL.
• R�phhc, qi, riz if R�pqx and R·xrz, for any p, q, r, x, z 2 PCL.

Note that R· restricted to P coincides with R.
The recursive definition of R� is well-founded because the second argument

to R� after “if” is always a proper subpart of the argument before “if”. It is easy
to check that R· and R� satisfy the frame conditions. For instance, the frame
condition for the right identity is precisely that R�piz iff p = z.

Let each atomic proposition’s valuation in the new model be the union of {a}
and its valuation in the old model. In other words, if X is an atomic proposition
in NL and x 2 PCL, then let x satisfy X in the new model MCL iff x = a or x
satisfies X in the old model M . It now remains to extend this property from
atomic propositions X to all structures and formulas X , by induction on X . The
inductive steps are ·, /, and \. Write � for the satisfaction relation in the old
model M , and �CL for the satisfaction relation in the new model MCL.

If X = X1 ·X2, then we reason:
x �CL X1 ·X2

iff 9y, z 2 PCL : y �CL X1 ^ z �CL X2 ^R·yzx (by the definition of �CL)
iff R·aax_ (9y 2 P : y � X1 ^R·yax)

_ (9z 2 P : z � X2 ^R·azx)
_ (9y, z 2 P : y � X1 ^ z � X2 ^R·yzx)

(by induction hypothesis)

iff x = a_9y, z 2 P : y � X1 ^ z � X2 ^Ryzx (by definition of R·)
iff x = a_ x � X1 ·X2 (by definition of �)

If X = X1/X2, then we reason:
x �CL X1/X2

iff 8z 2 PCL : (9y 2 PCL : y �CL X2 ^R·xyz)
! z �CL X1

(by definition of �CL)

iff 8z 2 PCL : (R·xaz_9y 2 P : y � X2 ^R·xyz)
! (z = a_ z � X1)

(by induction hypothesis)
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Now, either x 2 P or x /2 P . If x 2 P , then the definition of R· reduces the
last proposition above to 8z 2 P : (9y 2 P : y � X2 ^Rxyz) ! z � X1, which
is equivalent to x � X1/X2. If x /2 P , then the definition of R· reduces the last
proposition above to x = a. Hence x �CL X iff x = a_ x � X , as desired. The \
case is like the / case.

Thus if x falsifies a sequent f in NL, the same point x falsifies f in NLCL.
Since NLCL is sound, f is not provable in NLCL. QED.

17.5. The connection between NLl and NLCL

The inspiration for NLCL comes from the well-known equivalence between
the lambda calculus and Combinatory Logic. More specifically, the postulates of
NLCL implement a version of Shönfinkel’s embedding of l -terms into Combina-
tory Logic. Adapting the presentation in Barendregt (1981):152, we define h·i,
which maps an arbitrary l -term into combinatory logic:

(296)

hxi ⌘ x A(x, x)⌘ I

hMNi ⌘ hMi hNi A(x, M)⌘ KM (x not free in M)
hlx.Mi ⌘ A(x, hMi) A(x, MN)⌘ S(A(x, M))(A(x, N))

where Sxyz CL xz(yz), Kxy CL x, and Ix CL x as usual. As Barendregt shows,
if M b N, then hMi CL hNi.

For example,

(297) hlxly.yxi= S(K(SI))(S(KK)I)

We could use postulates that implement Shönkinkel’s mapping exactly. However,
the frame conditions and the conservativity proof for NLCL given in the previous
sections are simpler if we use instead a more efficient refinement of the mapping
due to David Turner. We add the following clauses:

(298)
A(x, MN)⌘ BM(A(x, N)) (x not free in M)
A(x, MN)⌘ C(A(x, M))N (x not free in N)

where Bxyz CL x(yz) and Cxyz CL xzy. With these clauses added, we have

(299) hlxly.yxi= B(CI)I

This is considerably simpler than the encoding given above in (297).
The two clauses in (298) match the B and C postulates of NLCL closely. This

correspondence is the heart of the equivalence between the two systems.
It would be reasonable to declare NLCL to be the “real” logic of scope-taking,

and define the lambda postulate to be a mere notational variant that succinctly
summarizes a sequence of structural inferences in NLCL. Instead, we will consider
NLl to be an independently-defined logic, and establish conditions under which
the two logics are equivalent.
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17.6. Embedding NLl into NLCL

This section investigates the conditions under which a derivation in NLl has
an equivalent derivation in NLCL.

For instance, obviously, since NLCL doesn’t have any structures built from l ’s
and variables, a derivation in NLl will only have an equivalent derivation in NLCL
if the final sequent is l -free.

In addition, the IBC variant of NLCL does not allow abstraction out of arbitrary
contexts. In order to characterize this restriction more precisely, we define the
following class of structures:

(300) Gdpe ::= p | p�q | q ·Gdpe | Gdpe ·q | ly. Gdpe

Given a structure p, a d e-context will consist either of the empty context, or else
the entire left element at the top level of a � structure, or else a larger context
built up from · and l . We can impose these restrictions by replacing the original
lambda postulate with one that mentions d e-contexts:

(301) SdDe ⌘ D�la Sdae

To illustrate, the following (bidirectional) inferences are licensed by (301):

(302)
A

=====
A�lxx

A�B
=========
A�lx(x�B)

A ·B
=========
A�lx(x ·B)

lx.(x ·B)
==========
B�lylx(x · y)

But not these:

(303)
(A ·B)�C

=============
A�lx((x ·B)�C)

A�B
=========
B�ly(A� y)

The reason these last two inferences are not allowed is that abstraction across � is
forbidden unless the abstractee is the complete left element connected by �.

A note on the case in which Gdpe= p�q: if this case is left out, there is still an
equivalence between NLl and NLCL, but only for theorems built entirely with ·.
Some sequents built from � will be theorems of NLCL but not of NLl , for instance,
(S( (DP)S) �DP)(S/DP)) ·DP ` S. See section 17.11 for a brief discussion of
the symmetric case, i.e., Gdpe= q� p, which is needed for sluicing.

In order to embed proofs in NLl into NLCL, we can adapt the mapping given
in the last section (which we continue to write h·i) in order to provide a mapping
from structures in NLl (with the lambda postulate restricted to d e-contexts) into
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structures in NLCL:

(304)

hxi ⌘ x
hp ·qi ⌘ hpi · hqi
hp�qi ⌘ hpi � hqi
hlx.pi ⌘ A(x, hpi)

A(x, x)⌘ I

A(x, p ·q)⌘ (B · p) ·A(x, q) (x not free in p)
A(x, p ·q)⌘ (C ·A(x, p)) ·q (x not free in q)
A(x, x�q)⌘ (C · I)�q (x not free in q)

The last clause handles abstraction of the left element of a �-structure, as discussed
in the previous paragraph.

Before we can show how this mapping can help translate NLl derivations into
NLCL derivations, we must address the possibility of abstracting a variable past its
lambda binder.

(305)

a · (b · c)

b�lx.a · (x · c)

b� ((x · c)�lylx.a · y)
The occurrence of x in the final sequent is not in the scope of the lambda that binds
it.

This sort of situation is reminiscent of scope extrusion in programming lan-
guages (e.g., Westbrook et al. (2010)), which occurs when code containing a vari-
able is executed outside the scope of the binder for that variable, usually causing
an runtime error. In linguistics, it is reminiscent of unbound traces created by
unrestricted Quantifier Raising, or by remnant movement (e.g., Heim and Kratzer
(1998):222). In the current context, inference patterns like that in (305) interfere
with translating from NLl to NLCL, since h·i maps the final sequent to a structure
that contains a variable, and NLCL structures do not contain variables.

We could consider further constraining the application of the lambda postu-
late in a way that prevented the undesired configuration from arising. However,
this would spoil the correspondence between NLl and NLCL. We can’t easily
constrain NLCL in a parallel way, because the completeness proof relies on as-
suming that the parameters of the structural postulates (the p’s, q’s, and r’s) can
be instantiated as any structure whatsoever.

Fortunately, it is not necessary to impose any special restrictions to avoid un-
bound variables. It is always possible to replace a derivation with unbound vari-
ables such as that in (305) with an equivalent derivation that does not involve any
(even temporarily) unbound variables. This is because abstracting anything other
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than a formula is inefficient, in the sense that the abstracted structure must always
eventually be moved back into its original position. This claim is made precise in
the following theorem.

Theorem (Efficient Abstraction for NLl ): given an arbitrary derivation in
NLl (with abstraction restricted to d e-contexts) there is an equivalent derivation
in which no instance of the structural postulate has a premise of the form q �
lxGdxe unless q is a (structure that consists entirely of a single) formula.

As a corollary, we can assume that any abstracted structure will always be a
single formula. This means that the problematic derivations like the one in (305)
can always be avoided.

Proof: Given an arbitrary derivation in NLl , consider all of the cases in which
there is a structure q�lxGdxe that serves as the focussed part of the premise of an
instance of the structural postulate in which q is not a formula. Choose the highest
of these cases, if there is a unique highest instance; if not, choose an instance such
that its depth in the proof is at least as small as that of any other. The strategy of
the proof will be to push this inference upwards in the derivation until it is adjacent
to an exactly canceling inference.

The proof proceeds by considering the adjacent inference immediately higher
in the derivation. We illustrate with an instance of \R:

(306)

A ·D[q�lxG[x]] ` B
\R

D[q�lxG[x]] ` A\B
l

D[G[q]] ` A\B

⌘

A ·D[q�lxG[x]] ` B
l

A ·D[G[q]] ` B
\R

D[G[q]] ` A\B

Given the derivation fragment on the left, we can replace it with the equivalent
fragment on the right. Although the initial premise and the final conclusion are
identical, the order of the lambda instance and the \R instance have been swapped.
Reversal of inference order is equally unproblematic for /R, )R, and( R.

Similar arguments show that the lambda postulate can be pushed upwards past
any L inference, although there are two configurations that deserve extra scrutiny.
The first case involves a situation in which a complex structure targeted by the
lambda postulate was only just introduced by an L rule:

(307)

A ` A B�lxG[x] `C
\L

(A ·A\B)�lxG[x] `C
l

G[A ·A\B] `C

⌘ A ` A

B�lxG[x] `C
l

G[B] `C
\L

G[A ·A\B] `C

Reading from top to bottom in the left-hand derivation, the \L rule creates the
complex structure A ·A\B, which is then targeted by the lambda postulate. But the
equivalent derivation on the right demonstrates that there is no difficulty pushing
the instance of the lambda postulate above the logical rule.



In
Pres

s
17.6. EMBEDDING NLl INTO NLCL 193

The second case that needs scrutiny involves( L.

(308)

lxGdxe ` A S[B] `C
( L

S[B( A�lxGdxe] `C
l

S[G[B( A]] `C

Once again, the worry is that if the occurrence of � that is introduced by( L is the
same � mentioned in the lambda postulate, it will not be possible to swap the in-
ferences. But the structure that undergoes beta reduction here is the formula B( A,
the principal formula of the )L inference, rather than a non-formula structure,
contrary to assumption.

It remains only to consider the possibility that the adjacent inference is another
instance of the structural postulate. If the two inferences target different structures
for abstraction, then their order can be swapped without harm. For instance,

(309)

q�lyGdye
l2

q�ly(y�lxGdxe)
l1

q�lxGdxe
⌘

q�lyGdye
l1

Gdqe
l2

q�lxGdxe
The inference l1 applies the postulate in the expansion direction (there is one more
occurrence of � in the premise than in the conclusion), and the inference l2 applies
the postulate in the reduction direction (there is one fewer occurrence of � in the
premise). As the right hand derivation shows, their order can be safely reversed.
(And in fact, in this configuration, the initial and final sequents are identical up to
choice of variables, so the pair of inferences cancel each other out, and can both
be removed without affecting the derivation.)

If two instances of the structural postulate do target the same structure, there
are two ways this could happen. One possibility is that the upper inference is a
beta expansion, in which case the targeted structure is re-abstracted to take scope
over an even larger structure. But this violates the assumption that the original
instance of the schema q�lxGdxe has a depth at least as small as any other. The
other way that the adjacent inferences could target the same occurrence of � is
if the upper inference is a reduction, in which case the postulates exactly cancel
each other out:

(310)

D[Gdqe] ` A
l

D[q�lxGdxe] ` A
l

D[Gdqe] ` A

Since the initial premise is identical to the final conclusion, both inferences can
be removed without harming the derivation.

Since � cannot occur in an axiom, and since the only way for the occurrence
of � in focus to be introduced into the proof is via an instance of the lambda
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postulate, it must always be possible to push the original instance of the lambda
postulate upwards in the proof until it is adjacent to an exactly cancelling instance
of the postulate, and can be removed. Since there are a finite number of cases to
consider, they can all be eliminated one by one. QED.

We will call on the reasoning in this proof twice more in this chapter: there is
an analogous theorem for NLCL, and a similar argument will play an essential role
in the decidability result below in section 17.9.

Theorem (Faithfullness of the h·i mapping from l -structures into CL-structures):
For any structure p and context Gd e,

(311)
hp�lxGdxei
========= CL

hGdpei
This inference is written in the style of a structural inference; here, ‘CL’ stands for
some sequence of inferences consisting entirely of structural inferences in NLCL.
This theorem says that beta reduction (or, in the bottom-to-top inference direction,
beta expansion) in NLl can be faithfully simulated by the structural postulates of
NLCL.

Proof: The proof proceeds by induction on the complexity of the abstraction
structure. The complexity of a variable or formula is 1; the complexity of the
structure lxp is one more than the complexity of the structure p; and the com-
plexity of the structure p ·q is one more than the sum of the complexities of p and
q.

Let lxGdxe be a structure in NLl with complexity c. The inductive assump-
tion is that for any structure lxG0dxe whose complexity is less than c, hp�lxG0dxei⌘CL
hG0dpei, for all p.

The cases are laid out as in (300). If lxGdxe =
lxx then hp�lxGdxei= hp�lxxi= hpi� hlxxi= hpi� I⌘CL hpi= hGdpei,

and the claim holds.
lx(x�q) then hp�lxGdxei = hp�lx(x�q)i = hpi � hlx(x �q)i = hpi �A(x, hx�

qi) = hpi � ((C · I)� hqi)⌘CL hpi � hqi= hp�qi= hGdpei, and the claim
holds.

lx(q ·G0dxe) then hp�lxGdxei= hpi�((B ·hqi) ·hlxG0dxei)⌘CL hqi·(hpi�hlxG0dxei)=
hqi · (hp � lxG0dxei). By the inductive assumption, hp � lxG0dxei ⌘CL
hG0dpei, and the claim holds.

lx(G0dxe ·q) (similar to the previous case).
The final case is when G is itself an abstraction, i.e., lxGdxe= lxlyG0dyedxe. We
can assume that G0 is structurally complex, and furthermore that the top connective
is ·. Furthermore, there must be structures q and r such that G0 = q · r, since that
is the only way to fit two distinct variables into a structure without abstracting
illegally from the right side of �. Each of the unique occurrences of x and of y can
be either in q or in r, so there are four subcases to consider. We begin by assuming
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that both x and y occur in q. Then we reason as follows:
(312)

hp�lxGdxei= hp�lxlyG0dyedxei
= hp�lxly(qdyedxe · r)i
= hpi � hlxly(qdyedxe · r)i
= hpi �A(x, hly(qdyedxe · r)i)
= hpi �A(x,A(y, hqdyedxe · ri))
= hpi �A(x,A(y, hqdyedxei · hri))
= hpi �A(x, (C ·A(y, hqdyedxei)) · hri)
= hpi � ((C ·A(x, C ·A(y, hqdyedxei))) · hri)
= hpi � ((C · ((B ·C) ·A(x,A(y, hqdyedxei)))) · hri)
= hpi � ((C · ((B ·C) ·A(x, hly(qdyedxe)i))) · hri)
= hpi � ((C · ((B ·C) · hlxly(qdyedxe)i)) · hri)
⌘CL (hpi � ((B ·C) · hlxly(qdyedxe)i)) · hri
⌘CL (C · (hpi � hlxly(qdyedxe)i)) · hri
= (C · hp�lxly(qdyedxe)i) · hri
⌘CL (C · hly(qdyedpe)i) · hri (by the inductive assumption)
= (C ·A(y, hqdyedpei)) · hri
= A(y, hqdyedpei · hri)
= A(y, hqdyedpe · ri)
= hly(qdyedpe · r)i
= hGdpei

The other three subcases are similar. QED.
With Efficient Abstraction and Faithfulness in hand, we can provide an explicit

mapping from NLl into NLCL.
Theorem (Embedding of l -free theorems of NLl in NLCL): For any deriva-

tion in NLl (with abstraction restricted to d e-contexts) whose final sequent does
not contain any l -structures, there is an equivalent derivation in NLCL.

Proof: The goal is to map a derivation in NLl onto a derivation in NLCL in
such a way that each sequent G ` A in the NLl proof is mapped onto a correspond-
ing sequent hGi ` A in the NLCL derivation.

Starting with an arbitrary derivation in NLl in which abstraction is restricted
to d e-contexts, and which has a lambda-free conclusion, we replace it with an
equivalent derivation in which only formulas have been abstracted. We are guar-
anteed to be able to do this by the Efficient Abstraction proof given above. The
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derivation will consist entirely of inferences involving the axiom rule, the struc-
tural rule, and the logical rules. For axioms, A ` A only if hAi ` A, since for any
formula A, hAi = A. An inference involving the structural postulate in NLl will
be replaced with an equivalent sequence of structural postulates from NLCL, as
guaranteed by the Faithfullness theorem proved immediately above. As for the
logical rules, we begin with one of the R rules. Clearly, we have:

(313)
A ·G ` B

\R
G ` A\B

iff
hA ·Gi ` B

\R
hGi ` A\B

Each of the other R rules behaves similarly. It remains only to consider the L
rules, for instance,

(314)
G ` A S[B] `C

\L
S[G ·A\B] `C

iff
hGi ` A hS[B]i `C

\L
hS[G ·A\B]i `C

The only possibility for concern would be if the B in S[B] were embedded inside of
a l -structure. But G cannot contain any variables bound by l s within S. Therefore
it is easy to see that hS[hGi ·A\B]i = hS[G ·A\B]i. For instance, if G = lxx, and
S[ ] =D ·([ ]�E), then hS[hGi ·A\B]i= hS[I ·A\B]i= hD ·([I ·A\B]�E)i= hS[G ·A\
B]i `C, as desired. Similarly for the other L rules.

We have shown that for each inference in the NLl derivation, we can con-
struct an equivalent sequence of inferences in NLCL. If the final sequent in the
NLl derivation is G ` A, the final sequent in the NLCL derivation will be hGi ` A.
But since G is l -free, G = hGi. Finally, since the two proofs differ only in the
application of structural rules, and since structural postulates do not affect the
Curry-Howard semantic labeling, the semantic value of the proofs are equivalent.
QED.

17.7. Embedding NLCL into NLl

This section addresses the converse of the question investigated in the previous
section, namely, the conditions under which a derivation in NLCL has an equivalent
derivation in NLl .

Once again, obviously, since NLl doesn’t have the structures I, B, and C, the
conclusion of the derivation in NLCL must be IBC-free.

And once again, in addition, we must worry about abstracting non-formula
structures.

(315)

a ·b
I

(a� I) ·b
C

a� ((C · I) ·b)
I

a� (((C� I) · I) ·b)
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Because there is no direct analog of the structures B or C in NLl , there is no
straightforward way of simulating a derivation in which B or C, or structures con-
taining them, serve as the target for abstraction.

However, just as for NLl , abstraction of a non-formula is always eliminable.
Theorem (Efficient Abstraction for NLCL): Given an arbitrary derivation in

NLCL, there is an equivalent derivation in NLCL in which no instance of the I
postulate has a premise of the form q � I unless q is a formula; and in which no
instance of the B postulate has a premise of the form q � ((B · p) · r) unless q is a
formula; and in in which no instance of the C postulate has a premise of the form
q� ((C · p) · r), unless q is a formula.

Proof sketch: The claims for I, B, and C must be considered simultaneously.
The reason is that when adjacent instances of I, B, C can target the same occur-
rence of �, their order cannot be swapped. For instance,

(316)

S[p� ((C · I) · r)] ` A
C

S[(p� I) · r] ` A
I

S[p · r] ` A

The order of the I and the C inferences cannot be reversed. Therefore, when
eliminating abstraction of non-formulas, we must start with the highest inference
in the chain, and then work our way down. The first step, then, is to find the set of
all cases in which a non-formula has been abstracted, whether via I, B, and C, and
begin by eliminating an instances with the smallest depth in the derivation. The
proof then proceeds in a manner similar to the proof of Efficient Abstraction for
NLl . QED.

Theorem (Embedding of IBC-free theorems of NLCL in NLl ): for any deriva-
tion in NLCL whose conclusion does not contain the structures I, B, or C, there is
an equivalent derivation in NLl .

Proof sketch: First, we replace the NLCL derivation with an equivalent one in
which abstraction is restricted to formulas, as guaranteed by the previous theorem.
Then we replace each instance of I, B, and C with instances of the lambda postulate
as follows:

(317)

p
=== I
p� I

⇠
p

===== l
p�lxx

p · (q� r)
========== B
q� ((B · p) · r)

⇠
p · (q� r)

============ l
q�lx(p · (x� r))

(p�q) · r
========== C
p� ((C ·q) · r)

⇠
(p�q) · r

============ l
p�lx((x�q) · r)
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Note that each of these applications of the lambda postulate obeys the restriction
to d e-contexts. Since the Efficient Abstraction theorem guarantees that struc-
tures such as B, (B · p), etc. will not be the target of any structural postulate, it is
straightforward to show that this mapping allows NLl to faithfully simulate the
NLCL derivation using the methods of the previous section. QED.

Thus NLl and NLCL are equivalent: any sequent containing only structures
built from · and � will be a theorem of one just in case it is a theorem of the
other. Furthermore, for each derivation in one system, there will be a matching
derivation in the other that differs only in the application of structural rules, which
means that the semantic values of the two derivations will be identical. Since
NLCL is conservative with respect to the non-associative Lambek grammar NL,
NLl is too. As a result, NLl with restricted abstraction contexts can be used with
full confidence that it is equivalent to an ordinary and well-behaved substructural
grammar.

17.8. Cut elimination

It is common when studying substructural logics to worry about cut elimi-
nation. For instance, in Lambek (1958), cut elimination was crucial to proving
decidability. We have not concentrated on issues of computational tractability in
this book, with the exception of the discussion of computational tractability in sec-
tion 12.2 for the grammar in Part I. Nevertheless, we will prove cut elimination
here and, in the next section, decidability for NLl .

The cut rule, repeated here, characterizes transitivity of the logical system:

(318)
G ` A S[A] ` B

CUT
S[G] ` B

The cut rule says that if G is a proof of A, and S is a proof of B that depends on
proving A, then we can construct a new proof of B in which A has been replaced
with the proof G. The formula A has been ‘cut out’ of the derivation.

A bit of standard vocabulary used below: we’ll say that for each of the premises
of a cut inference, the formula A targeted by the cut is the cut formula for that
premise.

A cut elimination result says that any theorem that can be proved with the full
system including the cut rule can be proved without using the cut rule. Lambek
(1958) showed that NL enjoys cut elimination, and Moortgat (1997) reports that
this is true as well for multi-modal versions of NL.

However, despite the close similarity of NLl and NLCL to other systems that
enjoy cut elimination, we should not take it for granted that cut elimination goes
through for our logics too. As a point in case, the Lambek-Grishin calculus, a
continuation-based type-logical grammar discussed in the next chapter, does not
have cut admissibility either in its sequent presentation or in its natural deduction
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presentation, although there is a display presentation of Lambek-Grishin for which
cut is admissible; see, e.g., Bastenhof (2013):67.

Therefore we will prove that NLl and NLCL have cut elimination. Our proof
strategy, just as it was above for completeness, will be to rely on Restall’s general
proof of cut elimination for Gentzen-style sequent systems. This strategy empha-
sizes the ordinariness and the standardness of our logics, and how they fit into a
larger landscape of substructural logics.

In order for Restall’s proof to apply, we need to demonstrate that our cut rule,
our structural rule, and our logical rules conform to certain conditions.

First, there are a number of constraints on the form of the logical and structural
rules (the ‘parameter conditions’, Restall (2000):114) that are clearly satisfied by
all of our rules and postulates. In particular, there is no rule in which some element
in the premise of a rule is duplicated in the conclusion.

In addition (p. 113), we must show that cuts are eliminable whenever one of
the premises is an axiom. This is clearly the case for our grammars; see relevant
details in, e.g., in chapter 1 of Jäger (2005).

We must also show what Restall (p. 115) ‘calls eliminability of matching prin-
cipal constituents’ (reduction of principal cuts). Since this depends on only the
logical rules, the discussion in Jäger once again provides full details.

The only remaining element in the preconditions for the proof is to demon-
strate that every formula is either consequent regular or antecedent regular (or
both). This precondition is in the service of showing that if one or the other cut
formula is not principal, the cut can be pushed upwards in the proof. A principal
formula is a new formula that is created by the inference rule; for instance, in the

\R inference rule
A�G ` B

G ` A\B
, A\B is the principal formula.

In fact, it turns out that every formula in our system is consequent regular.
A formula A is consequent regular (in the context of our system) just in case the
following two conditions hold: first, whenever a formula A is the goal of a sequent
(i.e., the formula to the right of the turnstyle) but is not a principal formula, a cut
on A against some sequent can be replaced by a cut on A in one of the premises.
For instance,

(319)

G ` E D[F ] ` B/C
\L

D[G ·E\F ] ` B/C S[B/C] ` D
CUT

S[D[G ·E\F ]] ` D

In this derivation, A = B/C is the goal of the sequent D[G ·E\F ] ` B/C, which
we are cutting against S[B/C] ` D. Since the left premise of the cut is a instance
of an \L inference, B/C is not a principal formula. This means that it must be
identical to some formula in one of the premises (since sequent rules guarantee by
construction that only principal formulas are new). The larger cut can be replaced
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with a smaller cut on the premise as follows:

(320) G ` E

D[F ] ` B/C S[B/C] ` D
CUT

S[D[F ]] ` D
\L

S[D[G ·E\F ]] ` D

We have pushed the cut upwards past the \L inference, that is, we have swapped
the order of the two inferences.

The second condition for establishing consequent regularity is that whenever
the cut formula A is the principal formula of the left premise of the cut, if it is not
the principal formula of the right premise, once again the larger cut can be pushed
upwards.

(321) S ` F

G[F ] ` D D[E] `C
\L

D[G[F ] ·D\E] `C
CUT

D[G[S] ·D\E] `C

Assume the cut formula F is the principal formula of the left premise of the cut.
Because the cut formula is not the principal formula of the \L inference, it must
be inherited from one of the premises of the \L inference, in this case, its left
premise. And once again, nothing prevents pushing the cut past the \L inference:

(322)

S ` F G[F ] ` D
CUT

G[S] ` D D[E] `C
CUT

D[G[S] ·D\E] `C

Establishing consequent regularity requires checking each inference in the system,
but this is not difficult. Our logical rules are completely standard, so it is not
surprising that they do not impede formulas being consequent regular.

In particular, inferences involving any of our structural rules in either NLl or
in NLCL do not interfere with establishing consequent regularity. The only poten-
tially problematic case would be when the right premise of a cut is the conclusion
of a structural inference. But since every formula in the conclusion of a structural
inference also occurs in the premise of the inference, it follows that the cut for-
mula occurs in the premise of the structural inference, so there is no obstacle to
pushing the cut above the structural rule.

At this point, we can assert the following corollary of Restall’s theorem 6.11:
Theorem (cut elimination): given that the parameter conditions, the elim-

inability of matching principal constituents, and the regularity condition hold, if
G ` A and D[A] ` B are provable, then D[G] ` B is also provable.

Proof: see Restall (2000):section 6.3. QED.



In
Pres

s
17.9. DECIDABILITY 201

17.9. Decidability

Decidability is a property a logic has if it is always possible to figure out
whether a sequent is a theorem (has a proof, has a derivation) in a bounded amount
of time, where the bound is some concrete function of the complexity of the se-
quent to be proved.

Cut elimination is important for decidability. The reason is that if there are
theorems that can only be completed using Cut, then during the course of trying
to build a proof, we must constantly consider whether a cut might be needed.

(323)
G ` A S[A] ` B

CUT
S[G] ` B

If the only way to prove the sequent S[G] ` B is via a cut, the proof-search problem
is to guess which A is going to work here. Since A does not correspond to any
subpart of the conclusion sequent, it is unconstrained. We have to try A after A,
and we may not know whether we’ve considered all of the relevant hypotheses.
The cut elimination theorem from the previous section removes this worry, since
it guarantees that we can ignore the cut rule while we search for a proof without
worrying that we’re missing out on finding derivations.

But cut elimination is not sufficient to guarantee decidability. After all, the dis-
tinctive feature of NLl is that we also have a kind of lambda expansion/reduction
in the syntax. The structural postulate given in chapter 13 is a reversible inference,
that is, it is bidirectional. In the discussion that follows, it will be helpful to keep
track of the two directions separately:

(324)
S[DdAe] ` B

REDUCTION
S[A�lxDdxe] ` B

S[A�lxDdxe] ` B
EXPANSION

S[DdAe] ` B

Since in proof search we are starting with the conclusion and trying to find appro-
priate premises, the names ‘reduction’ and ‘expansion’ are relative to the bottom-
to-top direction of reading proofs. The problem for decidability is that there is no
limit to the opportunities for expansion, since B ⌘ B�lxx ⌘ (B�lxx)�lxx ⌘ ....

Nevertheless, we have the following result:
Theorem (Decidability): NLl with abstraction restricted to d e-contexts is

decidable.
Proof sketch: we will show that every derivation in NLl is equivalent to a

derivation in which each inference has the subformula property. For our purposes,
an inference has the subformula property just in case every formula in the premises
corresponds to a unique (part of a) formula in the conclusion. It is easy to check
that every logical rule in NLl has the subformula property.

In addition, for each logical rule, there is always exactly one logical connective
in the conclusion that does not have a corresponding occurrence in the premises,
namely, the logical connective introduced by the principal formula of the relevant
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inference. For instance, the \R rule has exactly one occurrence of the \ connective
in the conclusion that does not have a corresponding occurrence in the premise.

The subformula property, in conjunction with the observation that there is al-
ways one fewer logical connectives in the premises than in the conclusion, means
that each application of a logical inference reduces the complexity of the mate-
rial to be proven, where the relevant notion of complexity is the total number of
logical connectives in the formulas in the premises.

At this point, we need only take into account the structural postulate. The
postulate does have the subformula property—every formula in the premise also
appears in the conclusion, and vice versa—but it does not eliminate any logical
connective, so there is no guarantee that the premise is simpler than the conclu-
sion.

Given an arbitrary proof in NLl , the strategy for proving decidability will be
to replace each application of the structural postulate with an equivalent derived
inference which does guarantee a strictly simpler set of premises.

The first step will be to push each expansion use of the postulate upwards in the
proof until one of two things happens: either it encounters a matching reduction
instance, in which case the two rules cancel each other out, and can be eliminated
from the proof; or else the expansion is adjacent to a logical rule that introduces
the occurrence of �. It turns out that the only candidate for such a logical rule is
( L. As we will explain, the combination of the expansion and the instance of( L
can be viewed as a two-step rule that in aggregate has the desired simplification
guarantee.

Therefore we will explore the conditions under which expansions can be pushed
upwards.

Assume then that we have a structure of the form q �lxGdxe as the focused
part of the premise of an instance of the structural postulate. By the Efficient
Abstraction theorem, we can assume that q is a formula. By reasoning similar to
the proof of the Efficient Abstraction theorem, we can push the structural inference
higher in the proof until it reaches a logical inference that targets the �. The
only logical rules that introduce � into their conclusion are )L and( L. But the
premise of an expansion inference does not match the conclusion of )L, since
the expansion inference creates a structure of the form lxGdxe to the right of the
occurrence of �, and the )L rule requires a formula in that position. Therefore the
only logical rule that can introduce the � in the premise of an expansion inference
is( L:

(325)

lxGdxe ` A SdBe `C
( L

S[B( A�lxGdxe] `C
EXP

S[GdB( Ae] `C

⌘
lxGdxe ` A S[B] `C

( LlS[GdB( Ae] `C
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We can replace the adjacent pair of inferences on the left with the derived in-
ference on the right, which we can call ( Ll . By repeated application of this
reasoning, every instance of expansion can either be eliminated, or replaced with
an instance of( Ll .

Having eliminated all expansion inferences, we can eliminate reduction infer-
ences in a similar fashion. Reasoning dually, beta reduction inferences can always
be pushed downwards until the reduction encounters an instance of )R that tar-
gets the � connective introduced by the reduction. And once again, we can replace
the combination of the reduction and the instance of )R with a derived rule that
captures their net effect:

(326)

GdAe ` B
RED

A�lxGdxe ` B
)R

lxGdxe ` A)B

⌘
GdAe ` B

)RllxGdxe ` A)B

We have two derived logical inferences: )Rl , and( Ll . The )Rl rule says that
in-situ elements can take scope directly from embedded positions, without need-
ing to first be abstracted leftwards. Dually, the( Ll rule says that a context can
surround a scope-taker even when the scope-taker is embedded in a still larger
surrounding context.

At this point, the logic contains the original logical rules, two derived logical
rules, and no structural postulates. Each inference eliminates exactly one logical
connective. As a result, no part of the proof can have a depth greater than the
number of logical connectives in the final sequent. Since there is at most one
way to apply each rule to a given occurrence of a logical connective, decidability
follows immediately. QED.

If NLl (restricted to d e� contexts) is decidable, it follows that NLCL is de-
cidable (at least for IBC-free sequents), since an IBC-free sequent is derivable in
NLCL if and only if there is an equivalent derivation in NLl .

Adding the two derived logical rules to the standard logical rules leads to
derivations of in-situ scope-taking:

(327)

john · (saw ·DP) ` S
)Rllx.john · (saw · x) ` DP)S S ` S

( Ll
john · (saw ·S( (DP)S)) ` S

john · (saw · everyone) ` S

In effect, we have compiled both parts of the structural rule into the logical rules.
If we add these two derived logical rules to the grammar, we can eliminate the
structural rules, and still derive all of the examples in Part II up to, but not includ-
ing, sluicing (as discussed below in section 17.11).
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Incidentally, if we carry this fusion strategy one step further, we derive the rule
of use for Moortgat’s q type constructor:

(328)

GdAe ` B
)RllxGdxe ` A)B S[C] ` D

( LlS[GdC( (B)A)e] ` D

⇡
GdAe ` B S[C] ` D

q
S[G[q(A, B,C)]] ` D

We now have an explanation for why it was impossible to find a general right rule
for the q type constructor: it is because the q inference represents the fusion of
two logically distinct inferences, each with their own left and right rules.

In support of the usefullness of factoring the q into independent components,
note that the decidable system here extends to parasitic scope, which requires
the independent logical components to be interleaved in a way that cannot be
duplicated by the q inference alone:
(329)

(the · (N/N ·waiter)) · (served ·DP) ` S
)Rl

lx.(the · (N/N ·waiter)) · (served · x) ` DP)S
)Rl

lylx.(the · (y ·waiter)) · (served · x) ` (N/N))(DP)S) DP)S ` DP)S
( Ll

lx.(the · ((DP)S)( ((N/N))(DP)S)) ·waiter)) · (served · x) ` DP)S
LEX

lx.(the · (same ·waiter)) · (served · x) ` DP)S S ` S
( Ll

(the · (same ·waiter)) · (served ·S( (DP)S)) ` S
LEX

(the · (same ·waiter)) · (served · everyone) ` S

Although the innermost pair of( Ll and )Rl could be fused into a single instance
of the q inference, the outermost pair could not.

17.10. Proof search with gaps

From the point of view of decidability, gaps are a challenge, since they allow
us to posit new structure during the course of a proof search, in which case we lose
the subformula property. An extension of the technique developed in the previous
section allows derivations with gaps without giving up decidability.

(330)
G[B ·A] `C

)Rlgap
G[A] ` B)C

G[A ·B] `C
)Rrgap

G[A] ` B)C

Since each of these inferences has the subformula property, and moreover, elim-
inates a logical connective, adding them to the logic will not compromise decid-
ability.
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To illustrate these logical rules in action, here is a derivation of the wh-question
Who did John see (with did suppressed for simplicity):

(331)

john · (see ·DP) ` S
)Rgap

john · see ` DP)S Q ` Q
/L

Q/(DP)S) · (john · see) ` Q
LEX

who · (john · see) ` Q

Incidentally, the inference rules )Rlgap and )Rrgap given in (330) allow embedded
sprouting of the sort illustrated above in (269) as simple parasitic scope:
(332)

···
lylx(x · (bidk · (when · y)))
` (ADV)S))((ADV)S))S)

(john · (left ·ADV)) ` S
)Rrgap

(john · left) ` ADV)S S ` S
)L

(john · left)� (ADV)S))S ` S
)L

(john · left)� (WHENSLGAP �lylx(x · (bidk · (when · y))) ` S

(john · left)�lx(x · (bidk · (when ·WHENSLGAP))) ` S
⌘

(john · left) · (bidk · (when ·WHENSLGAP)) ` S

As before, WHENSLGAP has category (ADV)S)(ADV)S), where ADV = (DP\S)\
(DP\S). The logical inference rules, with the behavior of gaps compiled in, infer
the possible location of the silent adverbial automatically.

17.11. Sluicing and unrestricted abstraction

NLl restricted to d e contexts and NLCL are not able to derive the full range of
sluicing derivations given above in chapter 16. The reason is that sluicing requires
abstraction of a scope-remnant, which requires abstracting a structure across a �.
For instance, the derivation given above in (255) begins as follows:

(333)

lx(x · left)�ly((someone� y) · (bidk · (who · SG))) ` S
⌘

(someone�lx(x · left)) · (bidk · (who · SG)) ` S
⌘

(someone · left) · (bidk · (who · SG)) ` S

As the top line shows, the derivation depends crucially on abstracting the non-
formula structure lx(x · left).

One way to extend the expressive power to handle sluicing is to add q� p to the
set of contexts in (300) that the structural postulate of NLl is allowed to abstract
over. Equivalently, we could add a postulate like the following to NLCL:

(334)
p�q

======= I0
q� (I0 · p)
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On the one hand, the completeness proof and the conservativity proof could easily
be adjusted to accommodate this extra postulate.

On the other hand, the Efficient Abstraction theorems would not hold of either
extended logic, since it would no longer be true that the order of adjacent instances
of the structural postulates could be swapped without affecting the result of the
proof. One way to see why this is so is to carefully examine the derivation of
basic sluicing in section 16.2, tracking where each occurrence of � enters and
exits the derivation.

In the absence of an Efficient Abstraction result, new techniques would be
needed to establish any equivalence result between NLl with restricted abstraction
and NLIBCI0 . Decidability would also need to be re-evaluated.

Another approach worth considering would be to remove all restrictions on
abstraction. In the case of NLl , this would mean allowing the lambda postulate to
abstract across any structure without restriction. In the case of NLCL, this would
mean adding the following two postulates to I, B, and C:

p� (q� r)
=========== B0
q� ((B0 · p)� r)

(p�q)� r
=========== C0
p� ((C0 ·q)� r)

(335)

Once again, these new postulates would be compatible with the completeness
proof and with the conservativity proof. And once again, new techniques would
be needed to establish any equivalence or decidability results.
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Scope needs delimited continuations

In this chapter, we will discuss some other continuation-based systems that
provide analyses of some of the phenomena addressed in this book, concentrating
on scope-taking and dynamic anaphora. We will suggest in each case that the other
analyses are incomplete in a way that our analyses are not. We want to emphasize
at the outset, however, that the points of agreement between our project and these
other approaches are much deeper and stronger than any points of disagreement.

There are two kinds of continuations: delimited, and undelimited. To appre-
ciate the difference, consider an expression embedded in a larger context. For the
sake of concreteness, let’s assume that the larger context is a single utterance, and
that the utterance consists of a single complex sentence. As always, a continu-
ation of the expression is a portion of the surrounding context. In general, any
specific expression will have many continuations, depending on how much of the
surrounding context the continuation captures. One continuation might be the con-
text up to the closest enclosing nominal, as we proposed for certain uses of same
in section 14.1; another might be the context up to the closest enclosing clause, as
we proposed for most uses of distributive quantifiers in natural language. These
are delimited continuations: continuations that correspond to a proper part of the
surrounding context.

An undelimited continuation is a continuation that contains the entire rest of
the context, no matter how large it is. In computational terms, a delimited con-
tinuation of category A)B denotes a function from objects of type A to objects of
type B. An undelimited continuation of category A !?, for comparison, denotes
a function on objects of type A that never returns.

In geometry, the difference between delimited and undelimited is analogous
to the difference between a line segment and a ray: a line segment has a defi-
nite endpoint, but a ray has only a starting point and an direction, and continues
indefinitely.

Formal systems (grammars, logics) that deal in undelimited continuations are
quite different from those that deal in delimited ones. The reason is that a delim-
ited continuation is, by definition, embedded within a larger context. That means
that the continuation must produce a value that the larger context needs. In the
formal systems we have been considering, that entails that the continuation must
have a result type, in order to fit into the larger composition. For this reason,

207
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Wadler (1994) calls delimited continuations ‘composable’: the inner continuation
returns a value of the type expected by the outer continuation.

Undelimited continuations are, by definition, unembedded. That means that
the formal system does not need to track what kind of result the continuation
returns. In fact, it is not even necessary to know what the type of that result will
be.

We will discuss two examples of formal systems that adapt undelimited con-
tinuations to model scope, one based on the l µ-calculus (de Groote (2001)), and
one based on the Lambek-Grishin calculus (Moortgat (2009), Bernardi and Moort-
gat (2007), Bernardi and Moortgat (2010), Bastenhof (2012), Bastenhof (2013)).
We will also discuss the continuation-based account of discourse anaphora of
(de Groote (2006)). Although that analysis does not make explicit use of un-
delimited continuations, it does limit the result type of a continuation in a similar
way.

In contrast with these, the grammars we have considered so far in this book
have all involved delimited continuations. In fact, we believe that only delimited
continuations are a good fit for modelling scope in natural language. The reason is
simple: the scope-takers we have considered so far in natural language are always
able to take scope over a region that is smaller than the entire utterance. That is,
the scope takers we’ve studied are all composable. In particular, the combination
of a scope-taker with its nuclear scope can always form a proper subpart of a larger
structure. These are the hallmarks of delimited continuations.

The need for delimited continuations becomes even more clear when we con-
sider cases in which the scope-taking element changes the result type of the ex-
pression it takes scope over. This means that no single result type, whether the
result type is conceived of as ? or as t, will suffice. To see what is at issue,
consider the following phrase:

(336) a book [the author of which] I know

In this example, the wh-word which takes scope over the bracketed determiner
phrase. That is, the context the author of [ ] has type DP)DP: it is the kind
of context that takes a determiner phrase plug and returns a determiner phrase.
For instance, if we plug in the determiner phrase Waverly, we get the determiner
phrase the author of Waverly. However, in this case, the bracketed phrase does not
function as a determiner phrase (for instance, if we replace the bracketed phrase
with a simple determiner phrase, the result is ungrammatical: *a book Waverly I
know). Rather, the bracketed phrase must function as a relative pronoun, similar
to that, as in a book that I know. Thus if REL is the category of a relative pronoun,
the category of which in (336) must be REL( (DP)DP): the sort of expression
that plugs into a hole of type DP, takes scope over an DP, and changes it into a
REL.
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In other words, the use of which in (336) changes the expression it takes scope
over from a determiner phrase into a relative pronoun. If ? or t is our only result
type, we are faced with a problem, since we appear to need two distinct result
types (namely, DP and REL).

In sum, the fact that scope-taking expressions in natural language are always
able to take scope over a proper subpart of the sentences in which they occur, and
the fact that scope-taking expressions are able to explicitly change the result type
of the expressions they take scope over, strongly suggests that the scope-taking
mechanism for natural language must deliver delimited continuations.

There may be other phenomena in natural language that also require delim-
ited continuations, such as the compositional semantics of focus (see, e.g., Barker
(2004) and Bekki and Asai (2009)).

Even if we are right—that scope requires delimited continuations—that does
not mean that undelimited continuations have no applications in natural language.
Modifying the continuation-based approach proposed in Kubota and Uegaki (2009),
Barker et al. (2010) argue that undelimited continuations are exactly the right tool
for modeling expressives such as damn, which arguably always make their seman-
tic contribution only over the entire utterance at once. In the terminology of Potts
(2003), Harris and Potts (2009), they are speaker-oriented.

(337) John pretended that he walked the damn dog

In this example, the negative content contributed by damn remains a commitment
of the speaker, and cannot be a report of an opinion held by John but not the
speaker. Barker et al. (2010) suggest that this top-level-only behavior is a good
match for undelimited continuations.

18.1. The l µ-calculus applied to scope

Building on ideas of Griffin (1990), Parigot (1992) develops an extension
of the lambda calculus in order to model the computational content of classical
proofs. That is, the Curry-Howard isomorphism shows that intuitionistic proofs
correspond to terms in the lambda calculus (glossing over some complications).
But there are classical theorems that cannot be proved intuitionistically, famously,
e.g., p_¬p, the law of the excluded middle. If classical proofs do not correspond
to the lambda calculus, what sort of computational system do they correspond to?
One answer, it turns out, is the l µ-calculus, which depends on continuations.

de Groote (2001) uses the l µ-calculus to model quantifier scope and at least
some scope ambiguity. In addition to ordinary variables (‘x’), l -abstracts (‘lxM’),
and applications (‘MN’), the l µ-calculus has µ-variables (‘a’), µ-abstracts (‘µaM’),
and naming constructions (‘aM’). In addition to the usual b -reduction of the l -
calculus:

(338) b -reduction: (lxM)N M{x 7! N}
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there are two new reduction rules:

(339) µ-reduction: (µaM)N µa.M{am 7! a(m N)}
where ‘M{am 7! a(m N)}’ is the term M with each occurrence of ‘am’ replaced
by ‘a(m N)’, and

(340) µ 0-reduction: M (µaN) µa.N{an 7! a(M n)}
where ‘N{an 7!a(M n)}’ is the term N with each occurrence of ‘an’ replaced by
‘a(M n)’. Although Parigot mentions µ 0 reduction, his official calculus does not
have µ 0-reduction, since it renders the calculus non-confluent. But non-confluence
is a virtue in this application, since it will give rise to the two scope readings.

As we’ll see momentarily, the µ and µ 0 reduction rules allow a scope-taking
expression to take scope incrementally by repeatedly taking scope over each ad-
jacent functor. This is the essence of continuations, of course: something in argu-
ment position consuming a superordinate functor.

De Groote adds to the l µ-calculus a rule that he calls ‘simplification’:

(341) Simplification: µaM M{aN 7! N}
Simplification extinguishes the functor-climbing potential of a µ-term. Thus it
plays a role roughly analogous to our LOWER type-shifter in Part I.

We can now assign someone the term µa.9x.ax; loves the constant loves;
and everyone the term µb .8y.by. Then we have two distinct reduction paths for
Someone loves everyone.

First, linear scope:

(342) (µa.9x.ax)(loves (µb .8y.by))
 µa.9x.a(loves (µb .8y.by) x)
 µa.9x.a((µb .8y.b (loves y)) x)
 µa.9x.a(µb .8y.b (loves y x)

 9x.8y.loves y x

The last step involves two applications of Simplification.
Second, inverse scope:

(343) (µa.9x.ax)(loves (µb .8y.by))
 (µa.9x.ax)(µb .8y.b (loves y))
 µb .8y.b ((µa.9x.ax)(loves y))
 µb .8y.b (µa.9x.a(loves y x))

 8y.9x.loves y x
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The addition of the simplification rule is crucial for the application to scope-
taking. In the original l µ-calculus, reduction continues until every scope-taking
expression takes scope over the entire sentence (or else gets trapped underneath
a l ; we’re ignoring Parigot’s ‘renaming’ reduction rule). That’s what it means to
be an undelimited continuation: to take scope over an undelimited region of the
context.

In most instances, then, the only way for a scope-taker to take anything less
than scope over the entire utterance is for the simplification rule to apply.

The syntactic category of an undelimited continuation is simpler than that of
a delimited one. If every scope-taker takes scope over the entire utterance, there
is no need to specify either the category over which the expression takes scope—
there is no choice in the matter—nor is there any need to specify the category of
the expression that results from the scope-taker combining with its nuclear scope;
again, there is no choice in the matter.

As for taking scope over expressions that are not clauses, note that if the sim-
plification rule fires at the wrong moment, the result is incoherent:

(344) (µa.9x.ax)(µb .8y.b (loves y)) (9x.x)(8y.loves y)

For this reason, de Groote requires the simplification rule to only apply to expres-
sion of type t, i.e., only when the scope-taking operator has taken scope exactly
over a clause.

Thus in order for the simplification rule to work, it is necessary to make as-
sumptions about the syntactic category of the complete expression. In many cases,
this is harmless: in many discussions of scope, the scope-taker is embedded inside
a declarative sentence (type t), and likewise the syntactic category of the sentence
as a whole is also t. But assuming that the type of the delimited continuation will
match the type of the final result is highly limiting, and empirically inadequate.
In terms of the delimited continuations we’ve been using throughout the book, it
means that the only possible category for a scope-taking expression is S( (A)S),
for any choice of A: the category over which the scope-taker takes scope is fixed
in advance for all scope-takers, and the result category must always be the same
as the scope target.

When other expression types besides plain clauses are involved, the situation
becomes more complex. For instance, if the category of the sentence as a whole
differs from the category over which a scope-taker takes scope, there is a conflict:

(345) a. Someone knows [who everyone spoke to]
b. Someone knows [who bought what]

In (345a), a universal quantifier takes scope over an embedded question, and in
(345b), a wh-word takes scope over an embedded question. At the same time, a
different quantifier takes scope over the matrix clause, which remains category t.
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These circumstances create incompatible requirements for the types of the scope-
taking expressions, as well as for the restriction on the simplification rule.

For this reason, choosing a result type in advance is not only contrary to the
spirit of undelimited continuations, it creates empirical problems for the applica-
tion to natural language scope.

In addition, requiring the result category to be the same as the scope target
also creates difficulties. Many of the analyses given through this book rely on
a scope-taker being able to change the category of the expression over which it
takes scope. Our analysis of binding in Part I, for instance, depends on a pronoun
changing the category of an expression from A to DPBA. Likewise, we analyzed
in-situ wh-expressions as changing the category of the expression they take scope
over from A to B ? A, for a variety of choices of B (where usually B = DP).

In addition, many of the analyses we have proposed rely on assuming a wide
variety of scope targets. This is true for the treatment of gaps, reflexives and
idioms in reconstruction cases, negative polarity licensing, the scope-taking of
same in nominals, parasitic scope in general, and sluicing. In other words, the
many analyses throughout this book taken together support the claim that for a
fully general treatment of scope-taking, it must be possible for all three of the
categories involved in characterizing scope-taking to differ from one another: the
local syntactic category of the scope-taker, the scope of the expression over which
the scope-taker takes scope, and the category of the expression that results from
combining the scope-taker with its nuclear scope. That is, if a scope-taker has
category C( (A)B), it must be possible to choose A, B and C independently.

So the l µ-calculus has limitations as a model of natural language scope. How-
ever, we endorse the basic insight that scope-taking in natural language involves
continuations, and that scope ambiguity is a matter of the order in which reduction
occurs (i.e., evaluation order).

18.2. The Lambek-Grishin calculus and scope

Moortgat (2009), Bernardi and Moortgat (2007), Bernardi and Moortgat (2010),
Bastenhof (2012), Bastenhof (2013) and others have studied an extension of Lam-
bek grammar (Lambek (1958)) due to Grishin (1983). Despite the fact that the
Lambek-Grishin calculus, unlike the l µ-calculus, is able to maintain a distinc-
tion between local category, scope-target, and result category of a scope-taker,
there are complications on the semantic side that arise once again, though in a
different way, from the fact that the continuations involved are undelimited.

The project of applying the Lambek-Grishin calculus to natural language scope
seeks to explain scope-taking as a consequence of completing a symmetry of the
ordinary Lambek grammar with respect to negation. Dual to the merge mode used
throughout this book, i.e., /, ⇥, and \, in addition, we now have ; (“left coim-
plication”), ⌦ (“cotensor”), and ↵ (“right coimplication”). In the terminology of
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Linear Logic (Girard (1987)), the ordinary merge connectives are a multiplicative
conjunction, and its Lambek-Grishin dual is a multiplicative disjunction.

The symmetry is beautiful. Cotensor is the mirror image of tensor, with the
mirror placed at the turnstyle. In particular, the counterpart of the Right rules for
Slash and Backslash are the Left rules for Coimplication Left and Coimplication
Right. For instance,

(346)
G ` A D[B] `C

/L
D[(B/A) ·G] `C

C ` D[B] A ` G
;R

C ` D[G� (A;B)]

On the left, we have our usual rule /L introducing a function/argument articulation
on the left side of the turnstyle. On the right, we have the mirror-image rule,
introducing a cofunction/coargument articulation on the right side of the turnsytle.
As Bernardi and Moortgat (2007) put it, the tensor mode composes values, and the
cotensor mode composes contexts.

In addition to the logical rules, which in some sense merely complete a sym-
metry latent in the original Lambek grammar, Grishin (1983) proposes a set of
structural postulates, including the following:

(347)

(P1) (A;B)⇥C ` A; (B⇥C)

(P2) C⇥ (A;B) ` A; (C⇥B)
(P3) C⇥ (B↵A) ` (C⇥B)↵A
(P4) (B↵A)⇥C ` (B⇥C)↵A

An example derivation shows how these postulates allow a coimplication intro-
duced at the sentential level (top of the derivation) to end up embedded in-situ in
a DP position (bottom of the derivation):

(348)

alice⇥ (thinks⇥ (DP⇥ left)) ` S S ` S
↵R

alice⇥ (thinks⇥ (DP⇥ left)) ` (S↵S)�S
;L

(S↵S); (alice⇥ (thinks⇥ (DP⇥ left))) ` S
P2

alice⇥ ((S↵S); (thinks⇥ (DP⇥ left))) ` S
P2

alice⇥ (thinks⇥ ((S↵S); (DP⇥ left))) ` S
P1

alice⇥ (thinks⇥ (((S↵S);DP)⇥ left)) ` S
LEX

alice⇥ (thinks⇥ (someone⇥ left)) ` S

The proposed category for the scope-taking quantifier someone is (S↵S); DP.
As Moortgat (2012) puts it, “In general, an expression of type (B↵C);A behaves
locally as an A within a context of type B; it then acts as a function transforming
B into C.” This is exactly what is needed for natural language scope-taking. Thus
LG elegantly models the syntactic behavior of scope-taking.
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In order to understand the nature of the syntactic explanation offered by the
Grishin postulates, note that P1 and P2 are highly similar in form to the structural
postulates for NLCL derived in section 17.2.

(349)

(A;B)⇥C
P1

A; (B⇥C)
⇡

(p�q) · r
========== C
p� ((C ·q) · r)

C⇥ (A;B)
P2

A; (C⇥B)
⇡

p · (q� r)
========== B
q� ((B · p) · r)

One difference stems from the fact that the NLCL postulates are bidirectional in-
ferences, so the structural constants B and C are needed to leave a trail of bread-
crumbs. This enables a quantifier expression to move off to take scope in a way
that (the element that conceptually serves the role of) its trace variable can find
its way back down to the original position of the scope-taker when the direction
of the postulates are reversed. (This remark about breadcrumbs will make more
sense when looking at an NLCL derivation such as (294) or (295).) Another differ-
ence is that the connectives in the postulates from NLCL are structural connectives,
‘·’ and ‘�’, rather than syntactic category connectives as in the Grishin postulates.
Nevertheless, despite these differences, these two pairs of rules accomplish the
same result in a highly similar manner, namely, allowing a scope-taker to interact
with distant syntactic elements.

On the semantic side, the fit is less natural. The standard semantics for coten-
sor and coimplication involves undelimited continuations, as spelled out by, e.g,
Curien and Herbelin (2000) or Wadler (2003). The specific formal language
Bernardi and Moortgat use for their semantic labeling based on this general rea-
soning is a minor variant of Curien and Herbelin (2000)’s l µµ̃-calculus. This se-
mantic labeling does not deliver the meanings needed for natural language scope-
taking without extension.

One way to see this is to consider the syntactic category assigned to a scope-
taking DP, namely, (S↵ S); DP. Figuring out the semantic type of a value of
category (S ↵ S); DP requires some careful reasoning. Starting as simply as
possible, a value of category A is the kind of object that can combine with a con-
tinuation of category A to form a complete computation. Likewise, the value of
category A\B is a function from values of category A to values of category B.
A continuation of category A\B, then, is an ordered pair hv, ki in which v is a
value of category A, and k is a continuation of category B. The computation is
completed by applying the function to v, and then cutting the result of the func-
tion/argument application with the continuation k . Here, ‘cutting’ means feeding
the value (matter) to the continuation (antimatter).

(350) A⇥ (A\B) ` B B ` (B↵C)�C
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By mirrored reasoning, a continuation of category B ↵C is a cofunction from
continuations of category C to continuations of category B. A value of category
B↵C is an object that can combine with a continuation of category B↵C to form
a complete computation. In (350), what the continuation B↵C needs in order
to complete the computation expressed by the sequent is a value of type B, and
a continuation of category C. Thus the natural semantic value for B↵C is an
ordered pair hv, ki, where v is a value of category B, and k is a continuation of
category C.

Taking this reasoning one step further, a value in category (S↵S);DP—our
target category, the category proposed for a scope-taking DP—will be an ordered
pair hk, vi in which k is a continuation of category S↵ S, and v is a value of
category DP.

The problem, then, is that the natural semantics for category (S↵S);DP does
not correspond in any direct way to a generalized quantifier meaning. Instead, it
is an ordered pair in which the DP is separate from the function that applies at
the clausal level. As a result, there is no direct way for a quantifier in the first
component to bind (or affect in any way) the value of the DP component.

Some additional mechanism is required. Rather than computing with terms
in this formal system directly, Bernardi and Moortgat (2007) and Bernardi and
Moortgat (2010) map l µµ̃-terms into typed (intuitionistic) lambda terms via a
Continuation-Passing Style transform similar to the ones discussed in chapter 12.
The extra expressive power provided by the CPS transform allows lexical items to
denote functions that do not correspond to any expression in the l µµ̃ language.
This in turn allows the lexical items to extend the expressive power of the Lambek-
Grishin grammars to simulate the behavior of delimited continuations.

There is some motivation for continuizing the semantics that is independent
of the application to scope-taking, namely, if the semantic labeling is not itself
continuized, it is not confluent. The choice of a CPS evaluation regime restores
confluence.

Note that, e.g., Barker (2002) shows that a CPS transform itself introduces
enough continuation-passing to cover a significant amount of the semantics of
scope-taking. The net result in the complete LG system is that the semantics
part of the syntax and semantics of scope-taking do not follow from the Lambek-
Grishin system alone. The question, then, is how much of the scope-taking is due
to the Grishin postulates, and how much of the explanation of scope-taking is due
to the extra power provided by the CPS transform.

To drive this point home, Bastenhof (2013) shows that if we provide the
Lambek-Grishin system with a particular formal language for representing the
meanings of expressions and derivations, it is possible to derive the full power of
Hendriks (1993) Flexible Montague Grammar, giving a robust account of scope
that does not use the Grishin postulates given in (347) at all.
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It appears, then, that the Grishin interaction postulates are neither sufficient
nor necessary for modeling scope.

Furthermore, as we saw above in the previous section in the discussion of
the l µ-calculus, in order for the natural language quantifiers to take scope over
embedded expressions at all, it is necessary to choose in advance the result type
of the complete computation. Bernardi and Moortgat choose t as the result type,
just as in de Groote (2001); but as discussed in the previous section, there is no
single choice for a result type that is adequate in general.

18.3. A continuation-based grammar for dynamic semantics

de Groote (2006) develops a continuation-based grammar that reconstructs the
main results of Dynamic Predicate Logic (Groenendijk and Stokhof (1991)). The
starting point is to conceive of a discourse as a function from an initial set of
discourse referents to a truth value. This means that an individual sentence needs
two things in order to produce a complete discourse: an initial list of discourse
referents, and the rest of the discourse—that is, the sentence’s continuation. If [e]
is the semantic type of a list of discourse referents, then a continuized sentence
denotation has type

(351) [e]! ([e]! t)! t

This is a function from a list of discourse referents to a function from continuations
to truth values, where a continuation (the rest of the discourse) is itself a function
from a list of discourse referents to a truth value.

This gives us the following analysis of a standard example of dynamic dis-
course anaphora:

(352)

(John entered) (and (he0 sat)) l ik.entered j^ sat i0 ^k( j:i)
John entered l ik.entered j^k( j:i)

John lPik.P j( j:i)k
entered lxik.entered x^ki

and (he0 sat) l pik.pi(l j.sat i0 ^k j)
and lqpik.pi(l j.q jk)
he0 sat l ik.sat i0 ^ki

he0 lPik.Pinik
sat lxik.sat x^ki

Here, ‘in’ is the nth member of the list i. Some details to note: the generalized
quantifier John evaluates its continuation k with respect to a list j : i of individ-
uals, where ‘ j : i’ is the list of individual i with j prefixed to it. The dynamic
conjunction and evaluates its first argument (the right conjunct) with respect to a
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list of discourse referents j which the left conjunct may have updated with addi-
tional discourse referents. So the left conjunct John entered adds John to the set
of discourse referents, and the right conjunct he0 sat targets the position in the list
that contains the individual dynamically added by the left conjunct.

Thus, as explained above in chapter 3, continuizing the category S leads nat-
urally to the dynamic-semantics conception of sentence meaning as an update on
context.

If we have the following expression meanings

a donkey = lQik.9y.donkey y^Qy(y:i)k(353)
every = lPQik.8x.Pxi(l i.True)! Pxi(l j.Qx(x: j)(l i.True)(354)

then we have an analysis of donkey anaphora as in Every farmer with a donkey
beats it (see de Groote (2006) for full details). In slightly more detail, in the
value for a donkey, the existential quantifier selects an entity, and places it on the
updated list of discourse referents. In the value for every, whenever a choice of
x satisfies the restriction P, then a list of discourse referents with x added to it
will also satisfy the nuclear scope Q. Here, l i.True is a trivial continuation that
ignores the current set of discourse referents and simply returns True.

Once again, the grammar makes assumptions about the result type of the com-
plete discourse. The assumption is that the result type is t, the type of a declarative
sentence. To see why this choice is forced, note that many of the conjuncts in the
logical representations in the derivation given just above have the form ki, which
must therefore evaluate to a truth value. Moreover, it is assumed by the inner
workings of the lexical entry for every that discourses must evaluate to truth val-
ues, since the denotation for every relies on the assumption that both its restriction
P and its nuclear scope Q produce a truth value after being feed an appropriate
pair of arguments.

As a result of building in this reliance on truth value result types, it is unclear
even how to extend the account to simple yes/no questions such as

(355) Does every farmer who owns a donkey beat it?

The problem is that the internal semantics of the determiner every requires con-
tinuations to have type [e]! t, but yes/no questions do not denote truth values.

It will be necessary to add a more flexible category system that can track the
result types of various operators, allowing different scope-takers to deliver differ-
ent result categories, perhaps along the lines of the system in Part I.

18.4. Monads

Another strategy for scaling up the approach in de Groote (2006) would start
by replacing the system with a functionally equivalent State monad. As Wadler
(1995, 1994) explains, monads are a technique for adding a layer to a computation
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for managing a particular side effect. The state monad adds the ability to examine
and modify a store of information, here, a list of discourse referents.

There are many useful monads. Besides the State monad, monads that are
especially useful for natural language include the Reader monad, the List monad,
and the Continuation monad. Individual monads can be characterized by specify-
ing a unit function, and a bind function. The bind function is sometimes written
‘?’; as for the name, it is not exactly what linguists think of as binding, though
there is a connection that we will not elaborate on here.

Giorgolo and Asudeh (2011) show how to use a State monad to account for
dynamic binding, including donkey anaphora.

For the State monad, the unit function maps any ordinary denotation into a
monadic value that maintains state information. In the dynamic anaphora applica-
tion under consideration here, the state will be a simple list of discourse referents.
So the unit will take an ordinary denotation of type a and return a monadic object
of type [e]! (a, [e]), where ‘(a, [e])’ is the type of an ordered pair consisting of a
denotation of type a and a list of individuals.

unit = lx.l i.hx, ii(356)
p? f = l i.let hx, ji= pi in f x j(357)

The unit lifts a denotation into the monad type by turning it into something that
expects to receive an input state (here, i). It does not make any use of the input
state, but it does include the state in its output, the ordered pair hx, ii.

The bind function takes an ordinary denotation of type a and a function f
mapping monadic objects of type a onto a monadic object of type b, i.e., a !
[e] ! [e] ! (a, [e]). In words, bind applies the left monadic object u to the
initial state i, producing an ordered pair hx, ji consisting of a denotation x and an
updated state j. Then bind returns the ordered pair delivered by applying f first to
the newly-computed object x and then to the updated state j.

Monads must also obey certain constraints which guarantee that their com-
ponents are well-behaved in certain ways. For instance, in a genuine monad,
p?unit= p for all monadic objects p. The constraints are called ‘laws’, and we
will not pause to present them here; see, e.g., Wadler (1995) for details.

The easiest place to see the correspondence between the dynamic grammar
from de Groote (2006) and the State monad is to consider the function denoted by
dynamic conjunction given in (352):

(358) p and q = l ik.pi(l j.q jk)

Just as in the definition of bind immediately above in (357), the left conjunct p is
applied to the input state i, and then the right conjunct q is applied to the updated
state j.
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The conception of programming with monads is that it is possible to construct
a program without any thought of side effects, then add side effects after the fact
simply by lifting the original computation into a monad.

Shan (2001c) introduced monads for analyzing natural language. In particu-
lar, he pointed out (p. 289) that a Reader monad is well-suited for modeling the
relationship between an extensional (non-monadic) grammar and an intensional
(monadic) grammar. Ben-Avi and Winter (2007) develop a closely similar tech-
nique in considerably more detail. The monadic type constructor M that is relevant
for intensionalization maps an extensional meaning of type a to a monadic object
of type s ! a. That is, the monadic version of an expression in category a is a
function from worlds (type s) to objects of type a.

There is a monad called the Continuation monad. The Continuation monad
is at least as expressive as any other monad, in the sense that all other monads
(the Reader monad, the State monad, the List monad, etc.) can be simulated using
a continuation monad. Although the dynamic grammar of de Groote (2006) dis-
cussed in the previous section is not exactly in the form of a continuation monad, it
still gives a sense of how continuations can be used to reproduce the functionality
of a State monad.

Monads, like continuations, are able to regulate order of evaluation. Indeed, it
is the order-sensitive nature of monads that de Groote (2006) exploits in order to
derive the linear order asymmetries that characterize dynamic semantics. This is
because the bind operation guarantees that the left argument of bind will always be
evaluated before the right argument of bind. See Wadler (1994):43 for a discussion
of how a continuation monad can guarantee a call-by-value evaluation discipline
even when the monad is implemented within a language that is evaluated in a
call-by-name discipline.

We should add that the framework of de Groote (2006) is both elegant and
flexible. For example, Bumford and Barker (2013) show how to adapt the basic
technique to implement Brasoveanu (2011)’s compositional account of different.
Kobele (2012) adapts the technique to provide a non-movement analysis of quan-
tifier scope within a Minimalist syntax. For a third example, de Groote and Lebe-
deva (2010), Lebedeva (2012) extend this system to give a compositional account
of presupposition accommodation.

Nevertheless, the continuation-passing in de Groote (2006), as well as the
official Continuation monad, is less flexible than the full power of (delimited)
continuations. The reason is that the monad technique depends upon the monadic
operations returning a result whose type is once again a member of the same
monadic type. In our terms, monads in general are limited to having the input
type and the result type both be members of the same monadic type. This is
roughly equivalent in our systems of restricting every scope-taker to a category
of the form C( (A)B) where C = B. As Wadler (1994):47 remarks, “there is
no reason why the type p of a composable continuation need be the same as the
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type o returned by the entire computation”. He sketches how to allow for arbitrary
layers of composable (delimited) continuations, in the spirit of Danvy and Filinski
(1989).

In sum, we conclude that any fully general empirically adequate account of
scope-taking requires delimited, composable continuations. Undelimited contin-
uations are not adequate in the general case, though they may have applications
in natural language semantics other than scope-taking. In particular, we conclude
that it is necessary for a continuation-based system to allow the result type de-
livered by a scope-taking element to differ from the type of the expression over
which the scope-taker takes scope.
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The formal systems in Part I and Part II are quite different, not only formally,
but in substance: although the grammar in Part I seeks to explain crossover, the
grammar in Part II generates crossover examples as easily as it generates non-
crossover examples; likewise, in the other direction, the parasitic scope of Part II
is not easily translatable to the tower system.

On the one hand, this a good thing: we have presented two very different
projects, both of which show how a continuation-based approach can provide new
insights. The differences between the analyses emphasize that using continua-
tions is a perspective, method, a tool—not a theory. We shouldn’t expect two
different continuation-based analyses to necessarily be compatible any more than
we should expect two different Quantifier Raising analyses to necessarily be com-
patible, or two possible-worlds analyses, or two analyses involving mereological
fusion.

On the other hand, both projects involve scope-taking and binding, and it is
worthwhile asking whether they could be unified. Is there something about the
type-logical framework that is fundamentally at odds with imposing a left-to-right
evaluation regime? Certainly not: Barker and Shan (2006) present a type-logical
analysis that gives an evaluation-order account of crossover.

But it remains possible that there is something about parasitic scope that is
incompatible with explicit control over evaluation order. We will show that this is
not the case by sketching a way to add control over evaluation order to NLCL.

Working within NLCL, we begin by replacing (only) the postulate B with the
following variant:

p · (q� r)
========== B
q� ((B · p) · r)

p · (q� r)
=========== B00
q� ((B00 � p) · r)

(359)

The idea is that abstracting something (q) across a structure to its left (p) turns
the abstracted-over structure into an island. In the variant rule given here, this
is accomplished by hiding p behind a newly-introduced occurrence of �. Since
abstraction from the right element of a � structure is not allowed, no part of p can
be abstracted out of it, and crossover is blocked.

(360) a. Everyone loves his mother
b. everyone� ((C · I) · (his� ((B00 � loves) · ((C · I) ·mother)))) ` S

221



In
Pres

s
222 AFTERWORD: THE LOGIC OF EVALUATION ORDER

(361) a. ?His mother loves everyone
b. everyone� ((B00 � (his� ((C · I) ·mother))) · ((B00 � loves) · I)) ` S

For the grammatical sentence in (360), we have given the sequent just before an
application of the B00 postulate allows his to take parasitic scope over the nuclear
scope of everyone. For the crossover violation in (361), we have given the sequent
just before his would be about to take parasitic scope. But the B00 postulate does
not apply, thanks to the presence of the blocking occurrence of �. It is not possible
to complete the derivation, and (361) is correctly predicted to be ungrammatical.

As for extending this strategy to reconstruction examples, it is not difficult
to adapt the fronting analysis of chapter 5. If we have a new atomic structure
F (for ‘fronting’), then the fronting rule is once again purely a matter of a syn-
tactic adjustment: p � q ) (F · p) · q. This structural rule says that an F-marked
constituent p that is linearly adjacent to some q can be treated as equivalent to
having abstracted p from some gap position within q. If we assign which the
structure F ·Q( ((DP/N))S), and provide also associativity specific to fronting
(i.e., F · (p ·q)) (F · p) ·q), then with a gap of category (DPDP)S)( (DPDP)S),
the reconstruction example Which of hisi relatives does everyonei love can be
derived with reconstructed binding, but ?Which of hisi relatives loves everyonei
is correctly predicted to be a crossover violation.

In other words, it is feasible to translate the evaluation-order explanation of
crossover developed in Part I into the specific type-logical approach developed in
Part II.
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1.
S S
DP\S

⌘ S( ((DP\S))S) and
8x.[ ]
left x

⌘ lk.8x.k(left x).

2. h[ ] = thinks[ ]
3.

0

BBBB@

C D
A

left.exp
g[ ]
x

D E
A\B

right.exp
h[ ]

f

1

CCCCA
=

C E
B

left.exp right.exp
g[h[ ]]
f (x)

4.
0

BBBB@

S S
(DP\S)/DP

loves
[ ]

loves

S S
DP

everyone
8y. [ ]

y

1

CCCCA
=

S S
(DP\S)

loves everyone
8y. [ ]

loves y

Note that there is only one set of brackets in the result semantics instead of two,

i.e., the semantic value is not
[8y. [ ]]
loves y

. One way to determine which brackets can

be removed and when is to convert to flat notation, which has no brackets at all,
and back again:

[8y. [ ]]
loves y

⌘ lk8y.k(loves y)⌘
8y. [ ]

loves y

5.
0

BBBB@

DPBS S
DP
his

ly. [ ]
y

S S
DP\DP
mother

[ ]

mom

1

CCCCA
=

DPBS S
DP

his mother
ly. [ ]
mom y
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0

BBBB@

DPBS DPBS
(DP\S)/DP

loves
[ ]

loves

DPBS S
DP

his mother
ly. [ ]
mom y

1

CCCCA
=

DPBS S
DP\S

loves his mother
ly. [ ]

loves(mom y)

6.
ly8x.[ ]x

loves y (mom x)
7.

E
D

A
B B

D
C

=

E
D
C

A
B

8.

S DPBS
DP

everyone
8x.[ ]x

x

0

BBBB@

S S
(DP\S)/DP

loves
[ ]

loves

0

BBBB@

DPBS S
DP
his

ly. [ ]
y

DPBS DPBS
DP\DP
mother

[ ]

mom

1

CCCCA

1

CCCCA

=

DPBS DPBS
S

Everyone loves his mother
ly8x.[ ]x

loves (mom y) x

Because the right-to-left variant of the combination schema forces outside corners
to match, the pattern of lifting must be different from the derivation in (31). It
is not possible to LOWER, so the derivation can’t be completed. Note that the
semantic value is highly similar to the crossover derivation computed for exercise
4.

9. The tower convention for syntactic categories says that any category of the form

Z( (X)Y ) can be completely equivalently written as
Z Y

X
, no matter whether X ,

Y , or Z are atomic category symbols or complex. This means that the element
underneath the horizontal line is always a constituent, whether or not it is itself
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complex. Therefore we have the following equivalences:

E F
C D

A
⌘

E F✓
C D

A

◆
⌘

E F
C( (A)D)

⌘ E( ((C( (A)D)))F)

10. The tower convention for semantic values says that any semantic value of the form

lk.g[kx] can be completely equivalently written as
g[ ]
x

. So we have the follow-

ing equivalences:

h[ ]
g[ ]
x

⌘
h[ ]✓
g[ ]
x

◆
⌘

h[ ]
lk.g[kx]

⌘ lg.h[g(lk.g[kx])]

11.
�
lFg.F(lx.g(lk.kx))

��
lk8x.kx

�
= lg8x.g(lk.kx)

12.

E

E A AE M E A

1. MAE 2. MA 3. M E 4. M 5. A 6. M

13. Pronouns can bind other pronouns. Apply BIND to the leftmost pronoun:

S DPBS
DP

someone
9x. ([ ] x)

x

0

BBBB@

0

BBBB@

DPBS DPBS
((DP\S)/DP/S)

told
[ ]

told

DPBS DPBS
DP

everyone
8y. [ ]

y

1

CCCCA

0

BBBB@

DPBS DPBS
DP
he

lx.[ ] x
x

0

BBBB@

DPBS DPBS
(DP\S)/DP

saw
[ ]

saw

DPBS S
DP
him

ly.[ ]
y

1

CCCCA

1

CCCCA

1

CCCCA

14. The derivation of the embedded clause is the crucial part:
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DPBS DPBS

S S
DP

everyone
[ ]

8x.[ ]
x

0

BBBBBBBBBB@

DPBS DPBS

S S
(DP\S)/DP

saw
[ ]

[ ]

saw

DPBS S

S S
DP
her

ly.[ ]

[ ]

y

1

CCCCCCCCCCA

DPBS S

S S
S

everyone saw her
ly.[ ]

8x.[ ]
saw y x

LOWER
)

DPBS S
S

everyone saw her
ly.[ ]

8x.saw y x

An internal application of LOWER enforces embedded scope. Crucially, the se-
mantic effect of the pronoun is on a higher layer than the quantificational effect of
everyone.

15.

DP)S DP)S
DP

Mary
[ ]

m

0

BBBB@

DP)S DP)S
(DP\S)/S

thinks
[ ]

thinks

0

BBBB@

DP)S DP)S
DP

John
[ ]

j

0

BBBB@

DP)S DP)S
(DP\S)/DP

likes
[ ]

likes

DP)S S
DP

ly.[ ]
y

1

CCCCA

1

CCCCA

1

CCCCA

=

DP)S S
S

Mary thinks John likes
ly.[ ]

thinks(likes y j)m

LOWER
)

DP)S
Mary thinks John likes

ly.thinks(likes y j)m

16. Prohibit gaps of the form A( A when A = ((B/C))D). If the subcategory beneath
the lowest horizontal line has the form B/C, then the gap must be on a right branch.
(This solution is incomplete, but can be generalized.)

17. Making the right-to-left variant of the combination schema available allows deriva-
tion of the ungrammatical superiority violation *What did who eat . Here is a
derivation of the question body did who eat , omitting did for clarity:
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DP ? S S
DP
who

who(lx.[ ])
x

0

BBBB@

DP ? S DP ? S
(DP\S)/DP

eat
[ ]

eat

DP)(DP ? S) DP ? S
DP

ly.[ ]
y

1

CCCCA

=

DP ? S S
DP
who

who(lx.[ ])
x

DP)(DP ? S) DP ? S
DP\S
eat
ly.[ ]
eat y

=

DP)(DP ? S) S
S

(did) who eat
ly.who(lx.[ ])

eat y x

LOWER
)

DP)(DP ? S)
(did) who eat

ly.who(lx.eat y x)

Remember that the variant combination schema matches outside corners. This
question body is ready to combine with the fronted instantiation of what given by
lk.what(lx.kx):(DP ? (DP ? S))/(DP)(DP ? S)).

18. This is primarily an exercise in using linear semantic values rather than semantic
towers. It is necessary to LIFT the expressions John, left, and slept before begin-
ning combination. For the sake of simple expressions, beta reduction has been
performed at the earliest possible moment. For the schema for and, we instantiate
A = DP\S, and B = S.

S S
DP

John
lk.kj

0

BB@

S S
DP\S

left
lk.k left

0

BB@

✓✓
S S
DP\S

�
S S
DP\S

◆�
S S
DP\S

◆

and
l rlk.(lk)^ (rk)

S S
DP\S
slept

lk.k slept

1

CCA

1

CCA

=

S S
DP

John
(lk.kj)

S S
DP\S

left and slept
(lk.(k left)^ (k slept))

=

S S
S

John left and slept
(lk.k ((left j)^ (slept j)))

LOWER
)

S
John left and slept
(left j)^ (slept j)

19. The point of this exercise is to make sure that coordinating a DP that lives at the
individual level (type t) with a generalized quantifier goes smoothly.
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0

BB@

S S
DP

John
lk.kj

✓✓
S S
DP

�
S S
DP

◆�
S S
DP

◆

and
l rlk.(lk)^ (rk)

S S
DP

everyone
lk.8x.kx

1

CCA

S S
DP\S

left
lk.k left

=

S S
DP

John and everyone
lk.(kj)^ (8x.kx)

S S
DP\S

left
lk.k left

=

S S
DP

John and everyone left
lk.k ((left j)^ (8x.left x))

LOWER
)

S
John and everyone left
(left j)^ (8x.left x)

The right conjunct entails the left conjunct. The interpretation is paraphrased by
‘Not only John, but indeed, everyone, left’.

20. Argument Raising produces a shifted functor that takes the same number of argu-
ments as the original; Value Raising produces a shifted functor that takes one more
argument than the original. If we tried to modify Argument Raising to also add
an extra argument, the shifted derivations would never resolve: as mentioned in
the text, for every application of Value Raising that adds an argument place, there
must be a corresponding application of Argument Raising higher in the structure
to return the argument-place count to normal.

21. The type-shifter solution simply changes a trailing S� to S: for all choices of
A and B, shift B( (A)S�) to B( (A)S). This rule says in effect that an S� is
a kind of S, i.e., that the category S� is contained within the category S. See
Bernardi (2002), Bernardi and Szabolcsi (2008) for a more sophisticated approach
to category inferences applied to negative polarity. As for the lexical ambiguity
approach, we simply provide multiple lexical entries. The two approaches are
compatible: we can imagine that the variant lexical entries are created by the
type-shifter. The issue is a familiar one: can the type-shifter be limited in its
domain to the lexicon, or must it be part of the active grammar? For instance,
the FRONT type-shifter must be part of the active grammar, since the analysis of
pied-piping requires FRONT to apply to an expression that has been built up by
merge operations. Are there parallel arguments for the issue here? There is yet
a third solution, in which the LOWER type-shifter is adjusted to match either S in
the top right corner or S�. The next two exercises show that this third solution
would be incomplete.

22.
S S�

DP
no one
¬9x. [ ]

x

0

BBBB@

0

BBBB@

S� S�

((DP\S)/DP)/DP
gave
[ ]

gave

S� S�

DP
anyone
9y. [ ]

y

1

CCCCA

S� S
DP

anything
9z. [ ]

z

1

CCCCA

Conceptually what is going on is that anyone transmits the fact that it has been
licensed to other negative polarity items downstream. Note that the trailing S�
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of anything has been replaced by S by one of the mechanisms discussed in the
answer to the previous exercise.

23.
S S
DP

no one
¬9x. [ ]

x

0

BBBB@

S S�

(DP\S)/S
doubts
[ ]

doubts

0

BBBB@

S� S
DP

anyone
9y. [ ]

y

S S
DP\S

left
[ ]

left

1

CCCCA

1

CCCCA

This derivation is neutral across the two solutions proposed in the answer to
exercise 15. Either there is a type-shifter that shifts the category of no one to
S( (DP)S) and anyone to S�( (DP)S), or else these two words have these cate-
gories as variant lexical items.

24.

S S
DP

a donkey
lk.9x.donk x^kx

0

BB@

✓✓
S S
DP

�
S S
DP

◆�
S S
DP

◆

or
l rlk.(lk)_ (rk)

S S
DP

a goat
lk.9y.goat x^kx

1

CCA

=

S S
DP

a donkey or a goat
lk.(9x.donk x^kx)_ (9y.goat y^ky)

BIND
)

S DPBS
DP

a donkey or a goat
lk.(9x.donk x^ (kxx))_ (9y.goat y^ (kyy))

Combining this derivation with the simple case of donkey anaphora in (150):

S S
(S/S)/S

if
¬[ ]

l pq.p^¬q

0

BBBBBB@

S DPBS
DP

a donkey or a goat✓
lR.

✓
(9x.donk x_ (Rxx))_
(9y.goat y_ (Ryy))

◆◆
(l z. [ ])

z

DPBS DPBS
DP\S

entered
[ ]

entered

1

CCCCCCA

0

BBBB@

DPBS S
S

it left
lx. [ ]
left x

1

CCCCA

=

S S
S

If a donkey or a goat entered, it left

¬
✓✓

lR.
✓
(9x.donk x^ (Rxx))_
(9y.goat y^ (Ryy))

◆◆
(l zx. [ ])

◆

(entered z)^¬(leftx)

LOWER
)

S
If a donkey or a goat entered, it left

¬
✓

(9x.donk x^ ((entered x)^¬(left x)))
_(9y.goat y^ ((entered y)^¬(left y)))

◆
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We have adjusted the form of the semantic value of a donkey or a goat in order
to be able to display it as a semantic tower. Crucially, the outer negation of the if
takes scope over the disjunction. The net truth conditions on this construal says
that there is no donkey who entered without leaving, and there is no goat who
entered without leaving.

25. ((S\S))S)( ((S\S))S)
26.

DP)S S
DP

ly.[ ]
y

0

BBBB@

S S
(DP\S)/DP

owns
[ ]

owns

0

BBBB@

S S
DP

�
N

a

lP.
9x. Px^ [ ]

x

N
donkey
donkey

1

CCCCA

1

CCCCA

BIND
)

DP)S S
DP

ly.[ ]
y

0

BBBB@

S S
(DP\S)/DP

owns
[ ]

owns

S DPBS
DP

a donkey
9x. donk x^ ([ ] x)

x

1

CCCCA
=

DP)S S
DP

ly.[ ]
y

S DPBS
DP\S

owns a donkey
9x. donk x^ ([ ] x)

owns x

LIFT,LIFT
)

S S

DP)S S
DP

[ ]

ly.[ ]
y

S DPBS

S S
DP\S

owns a donkey
9x. donk x^ ([ ] x)

[ ]

owns x

LOWER
)

S DPBS
DP)S

owns a donkey
9x. donk x^ ([ ] x)

ly.owns x y

Note that we apply LIFT to the entire gap expression, but only to the lower part of
the binder a donkey. This is what enables the indefinite to take scope wider than
the relative clause. We complete the derivation of farmer who owns a donkey
by using the same lexical entries for farmer and for the relative pronoun whorel
given in (183), except that they must each undergo LIFT (choosing B = S) in order
to combine with the version of owns a donkey derived here.

27. The easiest way is just to add another layer:
S DPBS
S DPBS

DP

� S DPBS
S DPBS

N
every

¬9x.g[ly.Px^¬([ ]y)]
i[ ]
x

� g[ ]
i[ ]
P

The middle layer can be repeated for as many layers as desired. Another strategy
would be to give pronouns the schematic category (DPB A)( (DP)A), which
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would allow stacking any number of binders on a single layer (other changes
would be needed to make this work).

28. We’re aiming for a bound reading of Someonei called every boy who met heri.

S DPBS

S S
DP

Someone
8z.([ ] z)

[ ]

z

0

BBBBBBBBBB@

DPBS DPBS

S S
(DP\S)/DP

called
[ ]

[ ]

called

0

BBBBBBBBB@

DPBS DPBS
S S
DP

�
N

every
[ ]

lP.
8x.Px ! [ ]

x

DPBS S
N

boy who met her
ly. [ ]

lx.boy x^ (met y x)

1

CCCCCCCCCA

1

CCCCCCCCCCA

The quantifier someone first undergoes the BIND typshifter, then LIFT applies to
its lower level. The truth conditions give someone wide scope: there is a person z
such that z called every boy who met z.

29. • The geach rule (e.g., Jacobson (1999):120) says that if a functor combines with
an argument containing a pronominal dependency, then the resulting expression
will contain a pronominal dependency. Translated into our notation:

A/B
exp

f

g
)

DBC DBC
A/B
exp
[ ]

f

That is, if A/B is the category of an expression that is about to combine with an

argument that does not contain any pronouns, then
DBC DBC

A/B
is the category

the expression would need to have in order to be able to combine with an argument
containing one pronominal dependency in a way that transmits the dependency to
the larger expression. But this, of course, is just a special case of our LIFT. •
As for Right Node Raising, we’ll discuss a simpler derivation that contains all of
the essential moves, namely, Betty loves, but Mary hates, her mother. Jacobson’s
analysis of Right Node Raising depends on the free availability of function com-
position (which Jacobson sometimes calls ‘compose’, e.g., Jacobson (1999):120).
Unlike most combinatory categorial grammars (and, looking ahead to Part II, un-
like most type logical grammars), the grammars in this book do not make use of
function composition. This is not because we think function composition is not a
necessary tool—indeed, it is necessary for a number of coordination constructions,
including Right Node Raising (see Kubota and Levine (2012), Kubota (2013) for
a recent discussion). Rather, it is because we want to emphasize that nothing in
our system depends on function composition. But for the purposes of this exer-
cise, we need function composition. And, just like Jacobson and Steedman (2000,
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2012), in order for function composition to work, we need the following two type-
shifters:

A
exp
x

lift
)

B /(A\B)
exp

l f . f x

A/B
exp

f

compose
)

(A/C) /(B/C)
exp

lgx. f (gx)

Of course, lift is just our LIFT generalized to the merge modality.

DP
Mary

m

LIFT
)

S S
DP

Mary
[ ]

m

BIND
)

S DPBS
DP

Mary
[ ]m
m

lift
)

S DPBS
S/(DP\S)

Mary
[ ]m

l f . f m

compose
)

S DPBS
(S/DP)/((DP\S)/DP)

Mary
[ ]m

lgx.gxm

With this derived expression, we can continue:

✓✓
S DPBS

S/DP

�
S DPBS

S/DP

◆�
S DPBS

S/DP

◆

but
l rlk.(lk)^ (rk)

0

BBBB@

S DPBS
(S/DP)/((DP\S)/DP)

Mary
[ ]m

lgx.gxm

DPBS DPBS
(DP\S)/DP

hates
[ ]

hates

1

CCCCA

The rest of the derivation is routine. The net truth conditions require that Betty
loves Betty’s mother, but Mary hates Mary’s mother. The point is more com-
pelling with quantificational binders, and the derivation is only mildly more com-
plex. In any case, there is no difficulty distributing a pronoun-containing argument
across coordinated binders. • In order to arrive at an account of paycheck pro-
nouns, all we need to do is instantiate the pronoun schema (ABB)( (A)B) with
a choice for A that allows an upstream DP to bind into it. Here, the choice will be

A = pn =
DPBS S

DP
, with B = S. We’re aiming at a paycheck interpretation for

Mary spent it on which it can mean ‘Mary spent her paycheck’:

pnBS pnBS

S DPBS
DP

Mary
[ ]

[ ]m
m

0

BBBBBBBBBB@

pnBS pnBS

DPBS DPBS
(DP\S)/DP

spent
[ ]

[ ]

spent

pnBS S

DPBS S
DP
it

l f .[ ]

lx.[ ]
f x

1

CCCCCCCCCCA

LOWER,LOWER
)

pnBS
Mary spent it

l f .spent( f m)m

Just like an unbound ordinary pronoun, a sentence with this final category is a
request from the pragmatic context to supply a value for the pn dependency, which
semantically will be a function of type e! e. Like Jacobson, in order to get the
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desired interpretation, we need only assume that the paycheck function was made
salient from previous discourse.

30. We proceed exactly as for the call-by-name case, except that we use the call-by-
value translation.

([(lxI)W]I) = ((lk.[lxI](lm.[W](ln.mnk)))I)

= ([lxI](lm.[W](ln.mnI)))
= ((lk.k(lx[I]))(lm.[W](ln.mnI)))

= ((lm.[W](ln.mnI))(lx[I]))

= ([W](ln.(lx[I])nI))

We still have a ways to go here, but it’s clear that it is always the leftmost redex
that is simulated next. Since we now have the infinite loop W in leftmost position,
the reduction is doomed.

31. Let L and R be the categories of two expressions that we are trying to combine.
The Slash, Backslash, and Front rules will contribute at most one way each of
producing a combined expression. If neither L nor R have more than one level,
we are done (base case). If L has more than one layer, choose D, E, and A such

that L =
D E

A
. Assume that there are only a finite number of ways of combin-

ing A and R (recursive assumption). Then the LiftRight clause will contribute at
most one new way of combining L and R for each way of combining A and R.
Symmetrically for R and LiftLeft. If both L and R have more than one layer, then
the Combination rule will contribute at most one new way of combining L and R
for each way of combining proper subparts of parts of L and R. In each case, the
recursive assumption involved two categories that had a strictly smaller number
of layers than the original L and R. Eventually, the recursion will arrive at the case
where L and R each have only one level, and we’ve reached the base case. At this
point in our reasoning, we need only consider the Lower rule. In order to execute
the Lower rule, we can wait until all of the other ways of combining L and R have
been found. Then the Lower rule will contribute at most one new way of combin-
ing L and R for each old way of combining them. The new way may itself trigger
the side condition for the Lower rule; but since the new way involves a category
that has a strictly smaller number of layers than the original way of combining L
and R, the total number of new ways of combining L and R via the Lower rule
must be finite.

32. Binding and NPI licensing require that a syntactic part of the dependent element
match a syntactic part of the element that is doing the binding or the licensing. The
only combination rules that require matching of any kind between parts of the two
towers being combined are Slash, Backslash, Lower, and the Combination rule.
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Clearly, Slash and Backslash operate only on the bottom layer, and so are not
relevant for binding and NPI licensing, which always take place on higher layers.
The Lower rule does require matching, but only on different layers, and so is also
irrelevant. But if the Lower rule is adjusted so that it is triggered by any matching
categories, i.e.:

A B
B

phrase
f [ ]
x

LOWER0

)
A

phrase
f [x]

where B is allowed to be any category, then binding and NPI licensing become
possible again. Unfortunately, so does crossover:

S S

DPBS S
DP
he
[ ]

lx.[ ]
x

0

BBBBBBBBBB@

S S

S S
(DP\S)/DP

loves
[ ]

[ ]

loves

S DPBS

S S
DP

everyone
8y.[ ] y

[ ]

y

1

CCCCCCCCCCA

=

S DPBS

DPBS S
S

He loves everyone
8y.[ ] y

lx.[ ]
loves y x

LOWER
)

S DPBS
DPBS

He loves everyone
8y.[ ] y

lx.loves y x

LOWER0

)
S

He loves everyone
8y.loves y y

As for re-introducing an evaluation order asymmetry, there are endless possibil-
ities. For instance, note that a legitimate binding/licensing configuration can be lo-
calized to the combination of two adjacent expressions, such that the binder/licensor
category is on the right-hand edge of the rightmost category, and the bindee/licensee
category is one level lower on the on the left-hand edge of the leftmost expres-
sion...

Here are derivations of the six readings of Someone gave everyone nothing that do not
make use of the Combination rule. Note that all of the derivations require three
continuation layers, i.e., they all finish with three applications of Lower.
exists > forall > nothing:
someone gave everyone nothing S Lower LiftR Lower LiftL Lower LiftL Backlash

someone (S//(DP\\S))
gave everyone nothing (S//((S//((DP\S)\\S))\\S)) LiftRight LiftLeft Slash
gave everyone (S//(((DP\S)/DP)\\S)) LiftLeft Slash

gave (((DP\S)/DP)/DP)
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everyone (S//(DP\\S))
nothing (S//(DP\\S))

forall > exists > nothing:
someone gave everyone nothing S Lower LiftL Lower LiftR Lower LiftL Backlash

someone (S//(DP\\S))
gave everyone nothing (S//((S//((DP\S)\\S))\\S)) LiftRight LiftLeft Slash

gave everyone (S//(((DP\S)/DP)\\S))
gave (((DP\S)/DP)/DP)
everyone (S//(DP\\S))

nothing (S//(DP\\S))

forall > nothing > exists:
someone gave everyone nothing S Lower LiftL Lower LiftL Lower LiftR Backlash

someone (S//(DP\\S)) exists
gave everyone nothing (S//((S//((DP\S)\\S))\\S)) LiftRight LiftLeft Slash

gave everyone (S//(((DP\S)/DP)\\S)) LiftLeft Slash
gave (((DP\S)/DP)/DP)
everyone (S//(DP\\S))

nothing (S//(DP\\S))

exists > nothing > forall:
someone gave everyone nothing S Lower LiftR Lower LiftL Lower LiftL Backlash

someone (S//(DP\\S))
gave everyone nothing (S//((S//((DP\S)\\S))\\S)) LiftLeft LiftRight Slash

gave everyone (S//(((DP\S)/DP)\\S)) LiftLeft Slash
gave (((DP\S)/DP)/DP)
everyone (S//(DP\\S))

nothing (S//(DP\\S))

nothing > exists > forall:
someone gave everyone nothing S Lower LiftL Lower LiftR Lower LiftL Backlash

someone (S//(DP\\S))
gave everyone nothing (S//((S//((DP\S)\\S))\\S)) LiftLeft LiftRight Slash

gave everyone (S//(((DP\S)/DP)\\S)) LiftLeft Slash
gave (((DP\S)/DP)/DP)
everyone (S//(DP\\S))

nothing (S//(DP\\S))

nothing > forall > exists:
someone gave everyone nothing S Lower LiftL Lower LiftL Lower LiftR Backlash

someone (S//(DP\\S))
gave everyone nothing (S//((S//((DP\S)\\S))\\S)) LiftLeft LiftRight Slash

gave everyone (S//(((DP\S)/DP)\\S)) LiftLeft Slash
gave (((DP\S)/DP)/DP)
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everyone (S//(DP\\S))
nothing (S//(DP\\S))
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Büring, Daniel. 2001. A situation semantics for binding out of DP. In Hastings
et al. (2001), 56–75.

———. 2004. Crossover situations. Natural Language Semantics 12(1):23–62.
———. 2005. Binding theory. Cambridge University Press.
Carlson, Greg N. 1987. Same and different: Some consequences for syntax and

semantics. Linguistics and Philosophy 10(4):531–565.
Charlow, Simon. 2009. Inverse linking, superiority, and QR. Submitted to the

ESSLLI student session.
———. 2010. Two kinds of binding out of DP. Talk handout, NYU Linguistics.
———. 2014. [decomposing dynamic semantics]. Ph.D. thesis, New York Uni-

versity.
Chierchia, Gennaro. 1991. Functional WH and weak crossover. In Proceedings of

the 10th West Coast Conference on Formal Linguistics, ed. Dawn Bates, 75–90.
Stanford, CA: Center for the Study of Language and Information.

———. 1993. Questions with quantifiers. Natural Language Semantics 1(2):
181–234.

———. 1995. The dynamics of meaning: Anaphora, presupposition, and the
theory of grammar. Chicago: University of Chicago Press.



In
Pres

s
240 Bibliography

———. 2013. Logic in grammar: Polarity, free choice, and intervention. Oxford
University Press.

Chomsky, Noam. 1973. Conditions on transformations. In A festschrift for Morris
Halle, ed. Stephen R. Anderson and Paul Kiparsky, 232–286. New York: Holt,
Rinehart and Winston.

Chung, Sandra. 2013. Syntactic identity in sluicing: How much and why. Lin-
guistic Inquiry 44(1):1–44.

Chung, Sandra, William A Ladusaw, and James McCloskey. 1995. Sluicing and
logical form. Natural Language Semantics 3(3):239–282.

Ciardelli, Ivano, Jeroen Groenendijk, and Floris Roelofsen. 2009. Atten-
tion!’might’in inquisitive semantics. In Proceedings of salt, vol. 19, 91–108.

Collins, Chris, and Paul M. Postal. 2014. Classical neg raising. MIT Press.
Comorovski, Ileana. 1996. Interrogative phrases and the syntax-semantics inter-

face. Dordrecht: Kluwer.
Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Semantics

3:79–122.
Curien, Pierre-Louis, and Hugo Herbelin. 2000. The duality of computation. In

ICFP ’00: Proceedings of the ACM international conference on functional pro-
gramming, vol. 35(9) of ACM SIGPLAN Notices, 233–243. New York: ACM
Press.

Danvy, Olivier, and Andrzej Filinski. 1989. A functional abstraction of typed
contexts. Tech. Rep. 89/12, DIKU, University of Copenhagen, Denmark. http:
//www.daimi.au.dk/~danvy/Papers/fatc.ps.gz.

———. 1990. Abstracting control. In Proceedings of the 1990 ACM conference
on Lisp and functional programming, 151–160. New York: ACM Press.

Dayal, Veneeta. 1995. Licensing any in non-negative/non-modal contexts. In
Proceedings of salt v, 72–93.

———. 1996. Locality in wh quantification: Questions and relative clauses in
Hindi. Dordrecht: Kluwer.

———. 1998. Any as inherently modal. Linguistics and philosophy 21(5):433–
476.

Dayal, Veneeta, and Roger Schwarzschild. 2010. Definite inner antecedents and
wh-correlates in sluices. Rutgers Working Papers in Linguistics 3:92–114.

Dekker, Paul JE. 2012. Dynamic semantics, vol. 91. Springer.
Dowty, David R. 1985. A unified indexical analysis of same and different: A

response to stump and carlson. In University of texas workshop on syntax and
semantics, austin, texas.

———. 1994. The role of negative polarity and concord marking in natural lan-
guage reasoning. In Proceedings from Semantics and Linguistic Theory IV, ed.
Mandy Harvey and Lynn Santelmann. Ithaca: Cornell University Press.

———. 2007. Compositionality as an empirical problem. In Direct composi-
tionality, ed. Chris Barker and Pauline Jacobson, 23–101. Oxford University

http://www.daimi.au.dk/~danvy/Papers/fatc.ps.gz
http://www.daimi.au.dk/~danvy/Papers/fatc.ps.gz


In
Pres

s
Bibliography 241

Press.
van Eijck, Jan, and Christina Unger. 2010. Computational semantics with func-

tional programming. Cambridge: Cambridge University Press.
Elbourne, Paul. 2009. Bishop sentences and donkey cataphora: A response to

Barker and Shan. Semantics and Pragmatics 2(1):1–7.
Elbourne, Paul D. 2006. Situations and individuals. Cambridge: MIT Press.
Evans, Gareth. 1977. Pronouns, quantifiers, and relative clauses (i). Canadian

Journal of Philosophy 7(3):467–536.
———. 1980. Pronouns. Linguistic inquiry 11(2):337–362.
Farkas, Donka. 2003. Quantifier scope and syntactic islands. Semantics. 2. Gen-

eralized quantifiers and scope 2:261.
Felleisen, Matthias. 1987. The calculi of lv-CS conversion: A syntactic theory

of control and state in imperative higher-order programming languages. Ph.D.
thesis, Computer Science Department, Indiana University. Also as Tech. Rep.
226.

Fry, John. 1997. Negative polarity licensing at the syntax-semantics interface. In
Proceedings of the 35th annual meeting of the Association for Computational
Linguistics and 8th conference of the European chapter of the Association for
Computational Linguistics, ed. Philip R. Cohen and Wolfgang Wahlster, 144–
150. San Francisco, CA: Morgan Kaufmann.

———. 1999. Proof nets and negative polarity licensing. In Semantics and syn-
tax in Lexical Functional Grammar: The resource logic approach, ed. Mary
Dalrymple, chap. 3, 91–116. Cambridge: MIT Press.

Gazdar, Gerald. 1980. A cross-categorial semantics for coordination. Linguistics
and Philosophy 3(3):407–409.

Geurts, Bart. 1996. On no. Journal of Semantics 13(1):67–86.
Giannakidou, Anastasia. 2011. Positive polarity items and negative polarity items:

variation, licensing, and compositionality. In Semantics: An international
handbook of natural language and meaning, ed. Claudia Maienborn, Klaus
Von Heusinger, and Paul Portner, vol. 33, 1660–1712. Walter de Gruyter.

Giorgolo, Gianluca, and Ash Asudeh. 2011. hm, h , ?i. In Proceedings of Sinn
und Bedeutung 16.

Girard, Jean-Yves. 1987. Linear logic. Theoretical Computer Science 50:1–101.
Griffin, Timothy G. 1990. A formulae-as-types notion of control. In POPL ’90:

Conference record of the annual ACM symposium on principles of program-
ming languages, 47–58. New York: ACM Press.

Grishin, VN. 1983. On a generalization of the ajdukiewicz-lambek system. Stud-
ies in nonclassical logics and formal systems 315–334.

Groenendijk, Jeroen, and Martin Stokhof. 1990. Dynamic Montague grammar. In
Papers from the 2nd symposium on logic and language, ed. László Kálmán and
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